Spaces:
Running
Running
import numpy as np | |
import librosa | |
def process_audio(audio, sr=16000, silence_thresh=-60, min_silence_len=250): | |
""" | |
Splits an audio signal into segments using a fixed frame size and hop size. | |
Parameters: | |
- audio (np.ndarray): The audio signal to split. | |
- sr (int): The sample rate of the input audio (default is 16000). | |
- silence_thresh (int): Silence threshold (default =-60dB) | |
- min_silence_len (int): Minimum silence duration (default 250ms). | |
Returns: | |
- list of np.ndarray: A list of audio segments. | |
- np.ndarray: The intervals where the audio was split. | |
""" | |
frame_length = int(min_silence_len / 1000 * sr) | |
hop_length = frame_length // 2 | |
intervals = librosa.effects.split( | |
audio, top_db=-silence_thresh, frame_length=frame_length, hop_length=hop_length | |
) | |
audio_segments = [audio[start:end] for start, end in intervals] | |
return audio_segments, intervals | |
def merge_audio(audio_segments_org, audio_segments_new, intervals, sr_orig, sr_new): | |
""" | |
Merges audio segments back into a single audio signal, filling gaps with silence. | |
Assumes audio segments are already at sr_new. | |
Parameters: | |
- audio_segments_org (list of np.ndarray): The non-silent audio segments (at sr_orig). | |
- audio_segments_new (list of np.ndarray): The non-silent audio segments (at sr_new). | |
- intervals (np.ndarray): The intervals used for splitting the original audio. | |
- sr_orig (int): The sample rate of the original audio | |
- sr_new (int): The sample rate of the model | |
Returns: | |
- np.ndarray: The merged audio signal with silent gaps restored. | |
""" | |
merged_audio = np.array([], dtype=audio_segments_new[0].dtype) | |
sr_ratio = sr_new / sr_orig | |
for i, (start, end) in enumerate(intervals): | |
start_new = int(start * sr_ratio) | |
end_new = int(end * sr_ratio) | |
original_duration = len(audio_segments_org[i]) / sr_orig | |
new_duration = len(audio_segments_new[i]) / sr_new | |
duration_diff = new_duration - original_duration | |
silence_samples = int(abs(duration_diff) * sr_new) | |
silence_compensation = np.zeros( | |
silence_samples, dtype=audio_segments_new[0].dtype | |
) | |
if i == 0 and start_new > 0: | |
initial_silence = np.zeros(start_new, dtype=audio_segments_new[0].dtype) | |
merged_audio = np.concatenate((merged_audio, initial_silence)) | |
if duration_diff > 0: | |
merged_audio = np.concatenate((merged_audio, silence_compensation)) | |
merged_audio = np.concatenate((merged_audio, audio_segments_new[i])) | |
if duration_diff < 0: | |
merged_audio = np.concatenate((merged_audio, silence_compensation)) | |
if i < len(intervals) - 1: | |
next_start_new = int(intervals[i + 1][0] * sr_ratio) | |
silence_duration = next_start_new - end_new | |
if silence_duration > 0: | |
silence = np.zeros(silence_duration, dtype=audio_segments_new[0].dtype) | |
merged_audio = np.concatenate((merged_audio, silence)) | |
return merged_audio | |