import math from typing import Optional import numpy as np import torch from torch.nn.utils import remove_weight_norm from torch.nn.utils.parametrizations import weight_norm from torch.utils.checkpoint import checkpoint LRELU_SLOPE = 0.1 class MRFLayer(torch.nn.Module): """ A single layer of the Multi-Receptive Field (MRF) block. This layer consists of two 1D convolutional layers with weight normalization and Leaky ReLU activation in between. The first convolution has a dilation, while the second has a dilation of 1. A skip connection is added from the input to the output. Args: channels (int): The number of input and output channels. kernel_size (int): The kernel size of the convolutional layers. dilation (int): The dilation rate for the first convolutional layer. """ def __init__(self, channels, kernel_size, dilation): super().__init__() self.conv1 = weight_norm( torch.nn.Conv1d( channels, channels, kernel_size, padding=(kernel_size * dilation - dilation) // 2, dilation=dilation, ) ) self.conv2 = weight_norm( torch.nn.Conv1d( channels, channels, kernel_size, padding=kernel_size // 2, dilation=1 ) ) def forward(self, x: torch.Tensor): # new tensor y = torch.nn.functional.leaky_relu(x, LRELU_SLOPE) y = self.conv1(y) # in-place call y = torch.nn.functional.leaky_relu_(y, LRELU_SLOPE) y = self.conv2(y) return x + y def remove_weight_norm(self): remove_weight_norm(self.conv1) remove_weight_norm(self.conv2) class MRFBlock(torch.nn.Module): """ A Multi-Receptive Field (MRF) block. This block consists of multiple MRFLayers with different dilation rates. It applies each layer sequentially to the input. Args: channels (int): The number of input and output channels for the MRFLayers. kernel_size (int): The kernel size for the convolutional layers in the MRFLayers. dilations (list[int]): A list of dilation rates for the MRFLayers. """ def __init__(self, channels, kernel_size, dilations): super().__init__() self.layers = torch.nn.ModuleList() for dilation in dilations: self.layers.append(MRFLayer(channels, kernel_size, dilation)) def forward(self, x: torch.Tensor): for layer in self.layers: x = layer(x) return x def remove_weight_norm(self): for layer in self.layers: layer.remove_weight_norm() class SineGenerator(torch.nn.Module): """ Definition of sine generator Generates sine waveforms with optional harmonics and additive noise. Can be used to create harmonic noise source for neural vocoders. Args: samp_rate (int): Sampling rate in Hz. harmonic_num (int): Number of harmonic overtones (default 0). sine_amp (float): Amplitude of sine-waveform (default 0.1). noise_std (float): Standard deviation of Gaussian noise (default 0.003). voiced_threshold (float): F0 threshold for voiced/unvoiced classification (default 0). """ def __init__( self, samp_rate: int, harmonic_num: int = 0, sine_amp: float = 0.1, noise_std: float = 0.003, voiced_threshold: float = 0, ): super(SineGenerator, self).__init__() self.sine_amp = sine_amp self.noise_std = noise_std self.harmonic_num = harmonic_num self.dim = self.harmonic_num + 1 self.sampling_rate = samp_rate self.voiced_threshold = voiced_threshold def _f02uv(self, f0: torch.Tensor): """ Generates voiced/unvoiced (UV) signal based on the fundamental frequency (F0). Args: f0 (torch.Tensor): Fundamental frequency tensor of shape (batch_size, length, 1). """ # generate uv signal uv = torch.ones_like(f0) uv = uv * (f0 > self.voiced_threshold) return uv def _f02sine(self, f0_values: torch.Tensor): """ Generates sine waveforms based on the fundamental frequency (F0) and its harmonics. Args: f0_values (torch.Tensor): Tensor of fundamental frequency and its harmonics, shape (batch_size, length, dim), where dim indicates the fundamental tone and overtones. """ # convert to F0 in rad. The integer part n can be ignored # because 2 * np.pi * n doesn't affect phase rad_values = (f0_values / self.sampling_rate) % 1 # initial phase noise (no noise for fundamental component) rand_ini = torch.rand( f0_values.shape[0], f0_values.shape[2], device=f0_values.device ) rand_ini[:, 0] = 0 rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) tmp_over_one = torch.cumsum(rad_values, 1) % 1 tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 cumsum_shift = torch.zeros_like(rad_values) cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi) return sines def forward(self, f0: torch.Tensor): with torch.no_grad(): f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) # fundamental component f0_buf[:, :, 0] = f0[:, :, 0] for idx in np.arange(self.harmonic_num): f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2) sine_waves = self._f02sine(f0_buf) * self.sine_amp uv = self._f02uv(f0) noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 noise = noise_amp * torch.randn_like(sine_waves) sine_waves = sine_waves * uv + noise return sine_waves, uv, noise class SourceModuleHnNSF(torch.nn.Module): """ Generates harmonic and noise source features. This module uses the SineGenerator to create harmonic signals based on the fundamental frequency (F0) and merges them into a single excitation signal. Args: sample_rate (int): Sampling rate in Hz. harmonic_num (int, optional): Number of harmonics above F0. Defaults to 0. sine_amp (float, optional): Amplitude of sine source signal. Defaults to 0.1. add_noise_std (float, optional): Standard deviation of additive Gaussian noise. Defaults to 0.003. voiced_threshod (float, optional): Threshold to set voiced/unvoiced given F0. Defaults to 0. """ def __init__( self, sampling_rate: int, harmonic_num: int = 0, sine_amp: float = 0.1, add_noise_std: float = 0.003, voiced_threshold: float = 0, ): super(SourceModuleHnNSF, self).__init__() self.sine_amp = sine_amp self.noise_std = add_noise_std # to produce sine waveforms self.l_sin_gen = SineGenerator( sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshold ) # to merge source harmonics into a single excitation self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) self.l_tanh = torch.nn.Tanh() def forward(self, x: torch.Tensor): sine_wavs, uv, _ = self.l_sin_gen(x) sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype) sine_merge = self.l_tanh(self.l_linear(sine_wavs)) return sine_merge, None, None class HiFiGANMRFGenerator(torch.nn.Module): """ HiFi-GAN generator with Multi-Receptive Field (MRF) blocks. This generator takes an input feature sequence and fundamental frequency (F0) as input and generates an audio waveform. It utilizes transposed convolutions for upsampling and MRF blocks for feature refinement. It can also condition on global conditioning features. Args: in_channel (int): Number of input channels. upsample_initial_channel (int): Number of channels after the initial convolution. upsample_rates (list[int]): List of upsampling rates for the transposed convolutions. upsample_kernel_sizes (list[int]): List of kernel sizes for the transposed convolutions. resblock_kernel_sizes (list[int]): List of kernel sizes for the convolutional layers in the MRF blocks. resblock_dilations (list[list[int]]): List of lists of dilation rates for the MRF blocks. gin_channels (int): Number of global conditioning input channels (0 if no global conditioning). sample_rate (int): Sampling rate of the audio. harmonic_num (int): Number of harmonics to generate. checkpointing (bool): Whether to use checkpointing to save memory during training (default: False). """ def __init__( self, in_channel: int, upsample_initial_channel: int, upsample_rates: list[int], upsample_kernel_sizes: list[int], resblock_kernel_sizes: list[int], resblock_dilations: list[list[int]], gin_channels: int, sample_rate: int, harmonic_num: int, checkpointing: bool = False, ): super().__init__() self.num_kernels = len(resblock_kernel_sizes) self.checkpointing = checkpointing self.f0_upsample = torch.nn.Upsample(scale_factor=np.prod(upsample_rates)) self.m_source = SourceModuleHnNSF(sample_rate, harmonic_num) self.conv_pre = weight_norm( torch.nn.Conv1d( in_channel, upsample_initial_channel, kernel_size=7, stride=1, padding=3 ) ) self.upsamples = torch.nn.ModuleList() self.noise_convs = torch.nn.ModuleList() stride_f0s = [ math.prod(upsample_rates[i + 1 :]) if i + 1 < len(upsample_rates) else 1 for i in range(len(upsample_rates)) ] for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): # handling odd upsampling rates if u % 2 == 0: # old method padding = (k - u) // 2 else: padding = u // 2 + u % 2 self.upsamples.append( weight_norm( torch.nn.ConvTranspose1d( upsample_initial_channel // (2**i), upsample_initial_channel // (2 ** (i + 1)), kernel_size=k, stride=u, padding=padding, output_padding=u % 2, ) ) ) """ handling odd upsampling rates # s k p # 40 80 20 # 32 64 16 # 4 8 2 # 2 3 1 # 63 125 31 # 9 17 4 # 3 5 1 # 1 1 0 """ stride = stride_f0s[i] kernel = 1 if stride == 1 else stride * 2 - stride % 2 padding = 0 if stride == 1 else (kernel - stride) // 2 self.noise_convs.append( torch.nn.Conv1d( 1, upsample_initial_channel // (2 ** (i + 1)), kernel_size=kernel, stride=stride, padding=padding, ) ) self.mrfs = torch.nn.ModuleList() for i in range(len(self.upsamples)): channel = upsample_initial_channel // (2 ** (i + 1)) self.mrfs.append( torch.nn.ModuleList( [ MRFBlock(channel, kernel_size=k, dilations=d) for k, d in zip(resblock_kernel_sizes, resblock_dilations) ] ) ) self.conv_post = weight_norm( torch.nn.Conv1d(channel, 1, kernel_size=7, stride=1, padding=3) ) if gin_channels != 0: self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1) def forward( self, x: torch.Tensor, f0: torch.Tensor, g: Optional[torch.Tensor] = None ): f0 = self.f0_upsample(f0[:, None, :]).transpose(-1, -2) har_source, _, _ = self.m_source(f0) har_source = har_source.transpose(-1, -2) # new tensor x = self.conv_pre(x) if g is not None: # in-place call x += self.cond(g) for ups, mrf, noise_conv in zip(self.upsamples, self.mrfs, self.noise_convs): # in-place call x = torch.nn.functional.leaky_relu_(x, LRELU_SLOPE) if self.training and self.checkpointing: x = checkpoint(ups, x, use_reentrant=False) else: x = ups(x) x += noise_conv(har_source) def mrf_sum(x, layers): return sum(layer(x) for layer in layers) / self.num_kernels if self.training and self.checkpointing: x = checkpoint(mrf_sum, x, mrf, use_reentrant=False) else: x = mrf_sum(x, mrf) # in-place call x = torch.nn.functional.leaky_relu_(x) x = self.conv_post(x) # in-place call x = torch.tanh_(x) return x def remove_weight_norm(self): remove_weight_norm(self.conv_pre) for up in self.upsamples: remove_weight_norm(up) for mrf in self.mrfs: mrf.remove_weight_norm() remove_weight_norm(self.conv_post)