import math from typing import Optional import torch from torch.nn.utils import remove_weight_norm from torch.nn.utils.parametrizations import weight_norm from torch.utils.checkpoint import checkpoint from rvc.lib.algorithm.commons import init_weights from rvc.lib.algorithm.generators.hifigan import SineGenerator from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock class SourceModuleHnNSF(torch.nn.Module): """ Source Module for generating harmonic and noise components for audio synthesis. This module generates a harmonic source signal using sine waves and adds optional noise. It's often used in neural vocoders as a source of excitation. Args: sample_rate (int): Sampling rate of the audio in Hz. harmonic_num (int, optional): Number of harmonic overtones to generate above the fundamental frequency (F0). Defaults to 0. sine_amp (float, optional): Amplitude of the sine wave components. Defaults to 0.1. add_noise_std (float, optional): Standard deviation of the additive white Gaussian noise. Defaults to 0.003. voiced_threshod (float, optional): Threshold for the fundamental frequency (F0) to determine if a frame is voiced. If F0 is below this threshold, it's considered unvoiced. Defaults to 0. """ def __init__( self, sample_rate: int, harmonic_num: int = 0, sine_amp: float = 0.1, add_noise_std: float = 0.003, voiced_threshod: float = 0, ): super(SourceModuleHnNSF, self).__init__() self.sine_amp = sine_amp self.noise_std = add_noise_std self.l_sin_gen = SineGenerator( sample_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod ) self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) self.l_tanh = torch.nn.Tanh() def forward(self, x: torch.Tensor, upsample_factor: int = 1): sine_wavs, uv, _ = self.l_sin_gen(x, upsample_factor) sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype) sine_merge = self.l_tanh(self.l_linear(sine_wavs)) return sine_merge, None, None class HiFiGANNSFGenerator(torch.nn.Module): """ Generator module based on the Neural Source Filter (NSF) architecture. This generator synthesizes audio by first generating a source excitation signal (harmonic and noise) and then filtering it through a series of upsampling and residual blocks. Global conditioning can be applied to influence the generation. Args: initial_channel (int): Number of input channels to the initial convolutional layer. resblock_kernel_sizes (list): List of kernel sizes for the residual blocks. resblock_dilation_sizes (list): List of lists of dilation rates for the residual blocks, corresponding to each kernel size. upsample_rates (list): List of upsampling factors for each upsampling layer. upsample_initial_channel (int): Number of output channels from the initial convolutional layer, which is also the input to the first upsampling layer. upsample_kernel_sizes (list): List of kernel sizes for the transposed convolutional layers used for upsampling. gin_channels (int): Number of input channels for the global conditioning. If 0, no global conditioning is used. sr (int): Sampling rate of the audio. checkpointing (bool, optional): Whether to use gradient checkpointing to save memory during training. Defaults to False. """ def __init__( self, initial_channel: int, resblock_kernel_sizes: list, resblock_dilation_sizes: list, upsample_rates: list, upsample_initial_channel: int, upsample_kernel_sizes: list, gin_channels: int, sr: int, checkpointing: bool = False, ): super(HiFiGANNSFGenerator, self).__init__() self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_rates) self.checkpointing = checkpointing self.f0_upsamp = torch.nn.Upsample(scale_factor=math.prod(upsample_rates)) self.m_source = SourceModuleHnNSF(sample_rate=sr, harmonic_num=0) self.conv_pre = torch.nn.Conv1d( initial_channel, upsample_initial_channel, 7, 1, padding=3 ) self.ups = torch.nn.ModuleList() self.noise_convs = torch.nn.ModuleList() channels = [ upsample_initial_channel // (2 ** (i + 1)) for i in range(len(upsample_rates)) ] stride_f0s = [ math.prod(upsample_rates[i + 1 :]) if i + 1 < len(upsample_rates) else 1 for i in range(len(upsample_rates)) ] for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): # handling odd upsampling rates if u % 2 == 0: # old method padding = (k - u) // 2 else: padding = u // 2 + u % 2 self.ups.append( weight_norm( torch.nn.ConvTranspose1d( upsample_initial_channel // (2**i), channels[i], k, u, padding=padding, output_padding=u % 2, ) ) ) """ handling odd upsampling rates # s k p # 40 80 20 # 32 64 16 # 4 8 2 # 2 3 1 # 63 125 31 # 9 17 4 # 3 5 1 # 1 1 0 """ stride = stride_f0s[i] kernel = 1 if stride == 1 else stride * 2 - stride % 2 padding = 0 if stride == 1 else (kernel - stride) // 2 self.noise_convs.append( torch.nn.Conv1d( 1, channels[i], kernel_size=kernel, stride=stride, padding=padding, ) ) self.resblocks = torch.nn.ModuleList( [ ResBlock(channels[i], k, d) for i in range(len(self.ups)) for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes) ] ) self.conv_post = torch.nn.Conv1d(channels[-1], 1, 7, 1, padding=3, bias=False) self.ups.apply(init_weights) if gin_channels != 0: self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1) self.upp = math.prod(upsample_rates) self.lrelu_slope = LRELU_SLOPE def forward( self, x: torch.Tensor, f0: torch.Tensor, g: Optional[torch.Tensor] = None ): har_source, _, _ = self.m_source(f0, self.upp) har_source = har_source.transpose(1, 2) # new tensor x = self.conv_pre(x) if g is not None: # in-place call x += self.cond(g) for i, (ups, noise_convs) in enumerate(zip(self.ups, self.noise_convs)): # in-place call x = torch.nn.functional.leaky_relu_(x, self.lrelu_slope) # Apply upsampling layer if self.training and self.checkpointing: x = checkpoint(ups, x, use_reentrant=False) else: x = ups(x) # Add noise excitation x += noise_convs(har_source) # Apply residual blocks def resblock_forward(x, blocks): return sum(block(x) for block in blocks) / len(blocks) blocks = self.resblocks[i * self.num_kernels : (i + 1) * self.num_kernels] # Checkpoint or regular computation for ResBlocks if self.training and self.checkpointing: x = checkpoint(resblock_forward, x, blocks, use_reentrant=False) else: x = resblock_forward(x, blocks) # in-place call x = torch.nn.functional.leaky_relu_(x) # in-place call x = torch.tanh_(self.conv_post(x)) return x def remove_weight_norm(self): for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() def __prepare_scriptable__(self): for l in self.ups: for hook in l._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): remove_weight_norm(l) for l in self.resblocks: for hook in l._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): remove_weight_norm(l) return self