import numpy as np import librosa def process_audio(audio, sr=16000, silence_thresh=-60, min_silence_len=250): """ Splits an audio signal into segments using a fixed frame size and hop size. Parameters: - audio (np.ndarray): The audio signal to split. - sr (int): The sample rate of the input audio (default is 16000). - silence_thresh (int): Silence threshold (default =-60dB) - min_silence_len (int): Minimum silence duration (default 250ms). Returns: - list of np.ndarray: A list of audio segments. - np.ndarray: The intervals where the audio was split. """ frame_length = int(min_silence_len / 1000 * sr) hop_length = frame_length // 2 intervals = librosa.effects.split( audio, top_db=-silence_thresh, frame_length=frame_length, hop_length=hop_length ) audio_segments = [audio[start:end] for start, end in intervals] return audio_segments, intervals def merge_audio(audio_segments_org, audio_segments_new, intervals, sr_orig, sr_new): """ Merges audio segments back into a single audio signal, filling gaps with silence. Assumes audio segments are already at sr_new. Parameters: - audio_segments_org (list of np.ndarray): The non-silent audio segments (at sr_orig). - audio_segments_new (list of np.ndarray): The non-silent audio segments (at sr_new). - intervals (np.ndarray): The intervals used for splitting the original audio. - sr_orig (int): The sample rate of the original audio - sr_new (int): The sample rate of the model Returns: - np.ndarray: The merged audio signal with silent gaps restored. """ merged_audio = np.array([], dtype=audio_segments_new[0].dtype) sr_ratio = sr_new / sr_orig for i, (start, end) in enumerate(intervals): start_new = int(start * sr_ratio) end_new = int(end * sr_ratio) original_duration = len(audio_segments_org[i]) / sr_orig new_duration = len(audio_segments_new[i]) / sr_new duration_diff = new_duration - original_duration silence_samples = int(abs(duration_diff) * sr_new) silence_compensation = np.zeros( silence_samples, dtype=audio_segments_new[0].dtype ) if i == 0 and start_new > 0: initial_silence = np.zeros(start_new, dtype=audio_segments_new[0].dtype) merged_audio = np.concatenate((merged_audio, initial_silence)) if duration_diff > 0: merged_audio = np.concatenate((merged_audio, silence_compensation)) merged_audio = np.concatenate((merged_audio, audio_segments_new[i])) if duration_diff < 0: merged_audio = np.concatenate((merged_audio, silence_compensation)) if i < len(intervals) - 1: next_start_new = int(intervals[i + 1][0] * sr_ratio) silence_duration = next_start_new - end_new if silence_duration > 0: silence = np.zeros(silence_duration, dtype=audio_segments_new[0].dtype) merged_audio = np.concatenate((merged_audio, silence)) return merged_audio