File size: 24,817 Bytes
20d6bb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import shutil
import warnings
import argparse
import torch
import os
import os.path as osp
import yaml
warnings.simplefilter("ignore")
# load packages
import random
from tqdm import tqdm
from modules.commons import *
import time
import torchaudio
import librosa
import torchaudio.compliance.kaldi as kaldi
from hf_utils import load_custom_model_from_hf
from resemblyzer import preprocess_wav, VoiceEncoder
# Load model and configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from transformers import Wav2Vec2FeatureExtractor, WavLMForXVector
from transformers import Wav2Vec2Processor, HubertForCTC
import jiwer
import string
from baselines.dnsmos.dnsmos_computor import DNSMOSComputer
def calc_mos(computor, audio, orin_sr):
# only 16k audio is supported
target_sr = 16000
if orin_sr != 16000:
audio = librosa.resample(
audio, orig_sr=orin_sr, target_sr=target_sr, res_type="kaiser_fast"
)
result = computor.compute(audio, target_sr, False)
sig, bak, ovr = result["SIG"], result["BAK"], result["OVRL"]
if ovr == 0:
print("calculate dns mos failed")
return sig, bak, ovr
mos_computer = DNSMOSComputer(
"baselines/dnsmos/sig_bak_ovr.onnx",
"baselines/dnsmos/model_v8.onnx",
device="cuda",
device_id=0,
)
def load_models(args):
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
config = yaml.safe_load(open(dit_config_path, "r"))
model_params = recursive_munch(config["model_params"])
model = build_model(model_params, stage="DiT")
hop_length = config["preprocess_params"]["spect_params"]["hop_length"]
sr = config["preprocess_params"]["sr"]
# Load checkpoints
model, _, _, _ = load_checkpoint(
model,
None,
dit_checkpoint_path,
load_only_params=True,
ignore_modules=[],
is_distributed=False,
)
for key in model:
model[key].eval()
model[key].to(device)
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Load additional modules
from modules.campplus.DTDNN import CAMPPlus
campplus_ckpt_path = load_custom_model_from_hf(
"funasr/campplus", "campplus_cn_common.bin", config_filename=None
)
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
campplus_model.eval()
campplus_model.to(device)
vocoder_type = model_params.vocoder.type
if vocoder_type == 'bigvgan':
from modules.bigvgan import bigvgan
bigvgan_name = model_params.vocoder.name
bigvgan_model = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=False)
# remove weight norm in the model and set to eval mode
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)
vocoder_fn = bigvgan_model
elif vocoder_type == 'hifigan':
from modules.hifigan.generator import HiFTGenerator
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r'))
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
hift_gen.load_state_dict(torch.load(hift_config['pretrained_model_path'], map_location='cpu'))
hift_gen.eval()
hift_gen.to(device)
vocoder_fn = hift_gen
elif vocoder_type == "vocos":
vocos_config = yaml.safe_load(open(model_params.vocoder.vocos.config, 'r'))
vocos_path = model_params.vocoder.vocos.path
vocos_model_params = recursive_munch(vocos_config['model_params'])
vocos = build_model(vocos_model_params, stage='mel_vocos')
vocos_checkpoint_path = vocos_path
vocos, _, _, _ = load_checkpoint(vocos, None, vocos_checkpoint_path,
load_only_params=True, ignore_modules=[], is_distributed=False)
_ = [vocos[key].eval().to(device) for key in vocos]
_ = [vocos[key].to(device) for key in vocos]
total_params = sum(sum(p.numel() for p in vocos[key].parameters() if p.requires_grad) for key in vocos.keys())
print(f"Vocoder model total parameters: {total_params / 1_000_000:.2f}M")
vocoder_fn = vocos.decoder
else:
raise ValueError(f"Unsupported vocoder type: {vocoder_type}")
speech_tokenizer_type = model_params.speech_tokenizer.type
if speech_tokenizer_type == 'whisper':
# whisper
from transformers import AutoFeatureExtractor, WhisperModel
whisper_name = model_params.speech_tokenizer.name
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
del whisper_model.decoder
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
def semantic_fn(waves_16k):
ori_inputs = whisper_feature_extractor([waves_16k.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True)
ori_input_features = whisper_model._mask_input_features(
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
with torch.no_grad():
ori_outputs = whisper_model.encoder(
ori_input_features.to(whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1]
return S_ori
elif speech_tokenizer_type == 'cnhubert':
from transformers import (
Wav2Vec2FeatureExtractor,
HubertModel,
)
hubert_model_name = config['model_params']['speech_tokenizer']['name']
hubert_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_name)
hubert_model = HubertModel.from_pretrained(hubert_model_name)
hubert_model = hubert_model.to(device)
hubert_model = hubert_model.eval()
hubert_model = hubert_model.half()
def semantic_fn(waves_16k):
ori_waves_16k_input_list = [
waves_16k[bib].cpu().numpy()
for bib in range(len(waves_16k))
]
ori_inputs = hubert_feature_extractor(ori_waves_16k_input_list,
return_tensors="pt",
return_attention_mask=True,
padding=True,
sampling_rate=16000).to(device)
with torch.no_grad():
ori_outputs = hubert_model(
ori_inputs.input_values.half(),
)
S_ori = ori_outputs.last_hidden_state.float()
return S_ori
elif speech_tokenizer_type == 'xlsr':
from transformers import (
Wav2Vec2FeatureExtractor,
Wav2Vec2Model,
)
model_name = config['model_params']['speech_tokenizer']['name']
output_layer = config['model_params']['speech_tokenizer']['output_layer']
wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
wav2vec_model = Wav2Vec2Model.from_pretrained(model_name)
wav2vec_model.encoder.layers = wav2vec_model.encoder.layers[:output_layer]
wav2vec_model = wav2vec_model.to(device)
wav2vec_model = wav2vec_model.eval()
wav2vec_model = wav2vec_model.half()
def semantic_fn(waves_16k):
ori_waves_16k_input_list = [
waves_16k[bib].cpu().numpy()
for bib in range(len(waves_16k))
]
ori_inputs = wav2vec_feature_extractor(ori_waves_16k_input_list,
return_tensors="pt",
return_attention_mask=True,
padding=True,
sampling_rate=16000).to(device)
with torch.no_grad():
ori_outputs = wav2vec_model(
ori_inputs.input_values.half(),
)
S_ori = ori_outputs.last_hidden_state.float()
return S_ori
else:
raise ValueError(f"Unsupported speech tokenizer type: {model_params.speech_tokenizer.type}")
# Generate mel spectrograms
mel_fn_args = {
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
"win_size": config['preprocess_params']['spect_params']['win_length'],
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": sr,
"fmin": config['preprocess_params'].get('fmin', 0),
"fmax": None if config['preprocess_params']['spect_params'].get('fmax', "None") == "None" else 8000,
"center": False
}
from modules.audio import mel_spectrogram
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
return (
model,
semantic_fn,
vocoder_fn,
campplus_model,
to_mel,
mel_fn_args,
)
@torch.no_grad()
def main(args):
# init xvector models
if args.xvector_extractor == "wavlm":
wavlm_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
"microsoft/wavlm-base-plus-sv"
)
wavlm_model = WavLMForXVector.from_pretrained(
"microsoft/wavlm-base-plus-sv"
).to(device)
elif args.xvector_extractor == "resemblyzer":
resemblyzer_encoder = VoiceEncoder()
elif args.xvector_extractor == 'wavlm-large':
import sys
sys.path.append("../UniSpeech/downstreams/speaker_verification")
from verification import init_model
wavlm_model = init_model("wavlm_large", "D:/wavlm_large_finetune.pth")
wavlm_model.cuda()
wavlm_model.eval()
else:
raise ValueError(f"Unknown xvector extractor: {args.xvector_extractor}")
# init asr model
asr_processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft")
asr_model = HubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft").to(device)
(
model,
semantic_fn,
vocoder_fn,
campplus_model,
to_mel,
mel_fn_args,
) = load_models(args)
sr = mel_fn_args["sampling_rate"]
source_dir = args.source
target_dir = args.target
diffusion_steps = args.diffusion_steps
length_adjust = args.length_adjust
inference_cfg_rate = args.inference_cfg_rate
baseline = args.baseline
max_samples = args.max_samples
try:
source_audio_list = open(osp.join(source_dir, "index.tsv"), "r").readlines()
except FileNotFoundError:
source_audio_list = os.listdir(source_dir)
source_audio_list = [f for f in source_audio_list if f.endswith(".wav")]
target_audio_list = os.listdir(target_dir)
conversion_result_dir = args.output
if baseline:
conversion_result_dir = os.path.join(conversion_result_dir, baseline)
os.makedirs(conversion_result_dir, exist_ok=True)
similarity_list = []
gt_wer_list = []
gt_cer_list = []
vc_wer_list = []
vc_cer_list = []
dnsmos_list = []
for source_i, source_line in enumerate(tqdm(source_audio_list)):
if source_i >= max_samples:
break
source_index, source_transcript = source_line.strip().split("\t")
source_path = osp.join(source_dir, f"{source_index}.wav")
for target_i, target_name in enumerate(target_audio_list):
target_path = osp.join(target_dir, target_name)
print(f"Processing {source_path} -> {target_path}")
if os.path.exists(osp.join(conversion_result_dir, source_index, f"{target_name}")):
# already converted, load the converted file
vc_wave_16k, _ = librosa.load(
osp.join(conversion_result_dir, source_index, f"{target_name}"), sr=16000
)
vc_wave_16k = torch.tensor(vc_wave_16k).unsqueeze(0)
ref_waves_16k, _ = librosa.load(target_path, sr=16000)
ref_waves_16k = torch.tensor(ref_waves_16k).unsqueeze(0)
else:
if baseline == "openvoice":
from baselines.openvoice import convert as openvoice_convert
ref_waves_16k, vc_wave_16k = openvoice_convert(source_path, target_path, "temp.wav")
elif baseline == "cosyvoice":
from baselines.cosyvoice import convert as cosyvoice_convert
ref_waves_16k, vc_wave_16k = cosyvoice_convert(source_path, target_path, "temp.wav")
else:
ref_waves_16k, vc_wave = convert(
source_path,
target_path,
model,
semantic_fn,
vocoder_fn,
campplus_model,
to_mel,
mel_fn_args,
sr,
length_adjust,
diffusion_steps,
inference_cfg_rate,
remove_prompt=args.remove_prompt,
)
vc_wave_16k = torchaudio.functional.resample(vc_wave, sr, 16000)
os.makedirs(osp.join(conversion_result_dir, source_index), exist_ok=True)
torchaudio.save(
osp.join(conversion_result_dir, source_index, f"{target_name}"),
vc_wave_16k.cpu(),
16000,
)
if args.xvector_extractor == "wavlm":
ref_inputs = wavlm_feature_extractor(
ref_waves_16k.squeeze(0).cpu(), padding=True, return_tensors="pt"
).to(device)
ref_embeddings = wavlm_model(**ref_inputs).embeddings
ref_embeddings = torch.nn.functional.normalize(ref_embeddings, dim=-1).cpu()
vc_inputs = wavlm_feature_extractor(
vc_wave_16k.squeeze(0).cpu(), padding=True, return_tensors="pt"
).to(device)
vc_embeddings = wavlm_model(**vc_inputs).embeddings
vc_embeddings = torch.nn.functional.normalize(vc_embeddings, dim=-1).cpu()
similarity = torch.nn.functional.cosine_similarity(
ref_embeddings, vc_embeddings, dim=-1
)
elif args.xvector_extractor == "resemblyzer":
ref_wav_resemblyzer = preprocess_wav(target_path)
vc_wav_resemblyzer = preprocess_wav(
osp.join(conversion_result_dir, source_index, f"{target_name}")
)
ref_embed = resemblyzer_encoder.embed_utterance(ref_wav_resemblyzer)
vc_embed = resemblyzer_encoder.embed_utterance(vc_wav_resemblyzer)
similarity = np.inner(ref_embed, vc_embed)
elif args.xvector_extractor == 'wavlm-large':
ref_embed = wavlm_model(ref_waves_16k.to(device)).cpu()
vc_embed = wavlm_model(vc_wave_16k.to(device)).cpu()
similarity = torch.nn.functional.cosine_similarity(ref_embed, vc_embed, dim=-1)
else:
raise ValueError(f"Unknown xvector extractor: {args.xvector_extractor}")
print(f"Similarity: {similarity}")
similarity_list.append(similarity)
# perform asr
vc_asr_inputs = asr_processor(
vc_wave_16k.squeeze(0).cpu(), return_tensors="pt", padding=True
).to(device)
vc_asr_logits = asr_model(**vc_asr_inputs).logits
predicted_ids = torch.argmax(vc_asr_logits, dim=-1)
vc_transcription = asr_processor.decode(predicted_ids[0])
# perform asr on source 16k
source_wav_16k = librosa.load(source_path, sr=16000)[0]
source_asr_inputs = asr_processor(
source_wav_16k, return_tensors="pt", padding=True
).to(device)
source_asr_logits = asr_model(**source_asr_inputs).logits
source_predicted_ids = torch.argmax(source_asr_logits, dim=-1)
source_transcription = asr_processor.decode(source_predicted_ids[0])
# convert transcriptions to all lower to calculate WER and CER
source_transcript = source_transcript.lower()
# remove punctuations in source_transcript
source_transcript = source_transcript.translate(str.maketrans("", "", string.punctuation))
source_transcription = source_transcription.lower()
vc_transcription = vc_transcription.lower()
# calculate WER and CER
gt_wer = jiwer.wer(source_transcript, source_transcription)
gt_cer = jiwer.cer(source_transcript, source_transcription)
vc_wer = jiwer.wer(source_transcript, vc_transcription)
vc_cer = jiwer.cer(source_transcript, vc_transcription)
print(f"GT WER: {gt_wer}, CER: {gt_cer}")
print(f"VC WER: {vc_wer}, CER: {vc_cer}")
gt_wer_list.append(gt_wer)
gt_cer_list.append(gt_cer)
vc_wer_list.append(vc_wer)
vc_cer_list.append(vc_cer)
# calculate dnsmos
sig, bak, ovr = calc_mos(mos_computer, vc_wave_16k.squeeze(0).cpu().numpy(), 16000)
dnsmos_list.append((sig, bak, ovr))
print(f"Average GT WER: {sum(gt_wer_list) / len(gt_wer_list)}")
print(f"Average GT CER: {sum(gt_cer_list) / len(gt_cer_list)}")
print(f"Average VC WER: {sum(vc_wer_list) / len(vc_wer_list)}")
print(f"Average VC CER: {sum(vc_cer_list) / len(vc_cer_list)}")
print(f"Average similarity: {sum(similarity_list) / len(similarity_list)}")
print(f"Average DNS MOS SIG: {sum([x[0] for x in dnsmos_list]) / len(dnsmos_list)}")
print(f"Average DNS MOS BAK: {sum([x[1] for x in dnsmos_list]) / len(dnsmos_list)}")
print(f"Average DNS MOS OVR: {sum([x[2] for x in dnsmos_list]) / len(dnsmos_list)}")
# save wer and cer result into this directory as a txt
with open(osp.join(conversion_result_dir, source_index, "result.txt"), 'w') as f:
f.write(f"GT WER: {sum(gt_wer_list[-len(target_audio_list):]) / len(target_audio_list)}\n")
f.write(f"GT CER: {sum(gt_cer_list[-len(target_audio_list):]) / len(target_audio_list)}\n")
f.write(f"VC WER: {sum(vc_wer_list[-len(target_audio_list):]) / len(target_audio_list)}\n")
f.write(f"VC CER: {sum(vc_cer_list[-len(target_audio_list):]) / len(target_audio_list)}\n")
f.write(f"Average similarity: {sum(similarity_list[-len(target_audio_list):]) / len(target_audio_list)}\n")
print(f"Average WER: {sum(gt_wer_list) / len(gt_wer_list)}")
print(f"Average CER: {sum(gt_cer_list) / len(gt_cer_list)}")
print(f"Average WER: {sum(vc_wer_list) / len(vc_wer_list)}")
print(f"Average CER: {sum(vc_cer_list) / len(vc_cer_list)}")
print(f"Average similarity: {sum(similarity_list) / len(similarity_list)}")
# save similarity list
with open(osp.join(conversion_result_dir, f"{args.xvector_extractor}_similarity.tsv"), "w") as f:
f.write("\n".join([str(s) for s in similarity_list]))
# save wer and cer result into this directory as a txt
with open(osp.join(conversion_result_dir, "result.txt"), 'w') as f:
f.write(f"GT WER: {sum(gt_wer_list) / len(gt_wer_list)}\n")
f.write(f"GT CER: {sum(gt_cer_list) / len(gt_cer_list)}\n")
f.write(f"VC WER: {sum(vc_wer_list) / len(vc_wer_list)}\n")
f.write(f"VC CER: {sum(vc_cer_list) / len(vc_cer_list)}\n")
print(f"Average DNS MOS SIG: {sum([x[0] for x in dnsmos_list]) / len(dnsmos_list)}")
print(f"Average DNS MOS BAK: {sum([x[1] for x in dnsmos_list]) / len(dnsmos_list)}")
print(f"Average DNS MOS OVR: {sum([x[2] for x in dnsmos_list]) / len(dnsmos_list)}")
def convert(
source_path,
target_path,
model,
semantic_fn,
vocoder_fn,
campplus_model,
to_mel,
mel_fn_args,
sr,
length_adjust,
diffusion_steps,
inference_cfg_rate,
remove_prompt=False,
):
source_audio = librosa.load(source_path, sr=sr)[0]
ref_audio = librosa.load(target_path, sr=sr)[0]
# decoded_wav = encodec_model.decoder(encodec_latent)
# torchaudio.save("test.wav", decoded_wav.cpu().squeeze(0), 24000)
# crop only the first 30 seconds
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
ref_audio = torch.tensor(ref_audio).unsqueeze(0).float().to(device)
if source_audio.size(1) + ref_audio.size(1) > 30 * sr:
print(f"reference audio clipped from {ref_audio.size(1)/sr} seconds to {30 * sr - source_audio.size(1)} seconds")
ref_audio = ref_audio[:, :30 * sr - source_audio.size(1)]
source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
S_alt = semantic_fn(source_waves_16k)
S_ori = semantic_fn(ref_waves_16k)
mel = to_mel(source_audio.to(device).float())
mel2 = to_mel(ref_audio.to(device).float())
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
feat2 = torchaudio.compliance.kaldi.fbank(
ref_waves_16k, num_mel_bins=80, dither=0, sample_frequency=16000
)
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
style2 = campplus_model(feat2.unsqueeze(0))
# Length regulation
cond = model.length_regulator(
S_alt, ylens=target_lengths, n_quantizers=3, f0=None
)[0]
prompt_condition = model.length_regulator(
S_ori, ylens=target2_lengths, n_quantizers=3, f0=None
)[0]
if remove_prompt:
cat_condition = cond
mel2 = torch.zeros([mel2.size(0), mel2.size(1), 0]).to(mel2.device)
else:
cat_condition = torch.cat([prompt_condition, cond], dim=1)
vc_target = model.cfm.inference(
cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
mel2,
style2,
None,
diffusion_steps,
inference_cfg_rate=inference_cfg_rate,
)
vc_target = vc_target[:, :, mel2.size(-1) :]
# Convert to waveform
vc_wave = vocoder_fn(vc_target).squeeze(1)
return ref_waves_16k, vc_wave
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--source", type=str, default="./examples/libritts-test-clean/"
)
parser.add_argument("--target", type=str, default="./examples/reference/")
parser.add_argument("--output", type=str, default="./examples/eval/converted/")
parser.add_argument("--diffusion-steps", type=int, default=30)
parser.add_argument("--length-adjust", type=float, default=1.0)
parser.add_argument("--inference-cfg-rate", type=float, default=0.7)
parser.add_argument(
"--xvector-extractor", type=str, default="wavlm-large"
) # wavlm or resemblyzer
parser.add_argument("--baseline", type=str, default="") # use "" for Seed-VC
parser.add_argument("--max-samples", type=int, default=20)
parser.add_argument("--remove-prompt", type=bool, default=False)
args = parser.parse_args()
main(args) |