seed-vc3 / data /ft_dataset.py
soiz1's picture
Upload 123 files
20d6bb2 verified
import torch
import librosa
import numpy as np
import random
import os
from torch.utils.data import DataLoader
from modules.audio import mel_spectrogram
duration_setting = {
"min": 1.0,
"max": 30.0,
}
# assume single speaker
class FT_Dataset(torch.utils.data.Dataset):
def __init__(self,
data_path,
spect_params,
sr=22050,
batch_size=1,
):
self.data_path = data_path
# recursively find all files in data_path
self.data = []
for root, _, files in os.walk(data_path):
for file in files:
if (file.endswith(".wav") or
file.endswith(".mp3") or
file.endswith(".flac") or
file.endswith(".ogg") or
file.endswith(".m4a") or
file.endswith(".opus")):
self.data.append(os.path.join(root, file))
mel_fn_args = {
"n_fft": spect_params['n_fft'],
"win_size": spect_params['win_length'],
"hop_size": spect_params['hop_length'],
"num_mels": spect_params['n_mels'],
"sampling_rate": sr,
"fmin": spect_params['fmin'],
"fmax": None if spect_params['fmax'] == "None" else spect_params['fmax'],
"center": False
}
self.to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
self.sr = sr
assert len(self.data) != 0
# if dataset length is less than batch size, repeat the dataset
while len(self.data) < batch_size:
self.data += self.data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
idx = idx % len(self.data)
wav_path = self.data[idx]
try:
speech, orig_sr = librosa.load(wav_path, sr=self.sr)
except Exception as e:
print(f"Failed to load wav file with error {e}")
return self.__getitem__(random.randint(0, len(self)))
if len(speech) < self.sr * duration_setting["min"] or len(speech) > self.sr * duration_setting["max"]:
print(f"Audio {wav_path} is too short or too long, skipping")
return self.__getitem__(random.randint(0, len(self)))
return_dict = {
'audio': speech,
'sr': orig_sr
}
wave, orig_sr = return_dict['audio'], return_dict['sr']
if orig_sr != self.sr:
wave = librosa.resample(wave, orig_sr, self.sr)
wave = torch.from_numpy(wave).float()
mel = self.to_mel(wave.unsqueeze(0)).squeeze(0)
return wave, mel
def build_ft_dataloader(data_path, spect_params, sr, batch_size=1, num_workers=0):
dataset = FT_Dataset(data_path, spect_params, sr, batch_size)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
collate_fn=collate,
)
return dataloader
def collate(batch):
batch_size = len(batch)
# sort by mel length
lengths = [b[1].shape[1] for b in batch]
batch_indexes = np.argsort(lengths)[::-1]
batch = [batch[bid] for bid in batch_indexes]
nmels = batch[0][1].size(0)
max_mel_length = max([b[1].shape[1] for b in batch])
max_wave_length = max([b[0].size(0) for b in batch])
mels = torch.zeros((batch_size, nmels, max_mel_length)).float() - 10
waves = torch.zeros((batch_size, max_wave_length)).float()
mel_lengths = torch.zeros(batch_size).long()
wave_lengths = torch.zeros(batch_size).long()
for bid, (wave, mel) in enumerate(batch):
mel_size = mel.size(1)
mels[bid, :, :mel_size] = mel
waves[bid, : wave.size(0)] = wave
mel_lengths[bid] = mel_size
wave_lengths[bid] = wave.size(0)
return waves, mels, wave_lengths, mel_lengths
if __name__ == "__main__":
data_path = "./example/reference"
sr = 22050
spect_params = {
"n_fft": 1024,
"win_length": 1024,
"hop_length": 256,
"n_mels": 80,
"fmin": 0,
"fmax": 8000,
}
dataloader = build_ft_dataloader(data_path, spect_params, sr, batch_size=2, num_workers=0)
for idx, batch in enumerate(dataloader):
wave, mel, wave_lengths, mel_lengths = batch
print(wave.shape, mel.shape)
if idx == 10:
break