|
import torch
|
|
import numpy as np
|
|
import re
|
|
import soundfile
|
|
from . import utils
|
|
from . import commons
|
|
import os
|
|
import librosa
|
|
|
|
from .mel_processing import spectrogram_torch
|
|
from .models import SynthesizerTrn
|
|
|
|
|
|
class OpenVoiceBaseClass(object):
|
|
def __init__(self,
|
|
config_path,
|
|
device='cuda:0'):
|
|
if 'cuda' in device:
|
|
assert torch.cuda.is_available()
|
|
|
|
hps = utils.get_hparams_from_file(config_path)
|
|
|
|
model = SynthesizerTrn(
|
|
len(getattr(hps, 'symbols', [])),
|
|
hps.data.filter_length // 2 + 1,
|
|
n_speakers=hps.data.n_speakers,
|
|
**hps.model,
|
|
).to(device)
|
|
|
|
model.eval()
|
|
self.model = model
|
|
self.hps = hps
|
|
self.device = device
|
|
|
|
def load_ckpt(self, ckpt_path):
|
|
checkpoint_dict = torch.load(ckpt_path, map_location=torch.device(self.device))
|
|
a, b = self.model.load_state_dict(checkpoint_dict['model'], strict=False)
|
|
print("Loaded checkpoint '{}'".format(ckpt_path))
|
|
print('missing/unexpected keys:', a, b)
|
|
|
|
|
|
class BaseSpeakerTTS(OpenVoiceBaseClass):
|
|
language_marks = {
|
|
"english": "EN",
|
|
"chinese": "ZH",
|
|
}
|
|
|
|
@staticmethod
|
|
def get_text(text, hps, is_symbol):
|
|
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
|
if hps.data.add_blank:
|
|
text_norm = commons.intersperse(text_norm, 0)
|
|
text_norm = torch.LongTensor(text_norm)
|
|
return text_norm
|
|
|
|
@staticmethod
|
|
def audio_numpy_concat(segment_data_list, sr, speed=1.):
|
|
audio_segments = []
|
|
for segment_data in segment_data_list:
|
|
audio_segments += segment_data.reshape(-1).tolist()
|
|
audio_segments += [0] * int((sr * 0.05)/speed)
|
|
audio_segments = np.array(audio_segments).astype(np.float32)
|
|
return audio_segments
|
|
|
|
@staticmethod
|
|
def split_sentences_into_pieces(text, language_str):
|
|
texts = utils.split_sentence(text, language_str=language_str)
|
|
print(" > Text splitted to sentences.")
|
|
print('\n'.join(texts))
|
|
print(" > ===========================")
|
|
return texts
|
|
|
|
def tts(self, text, output_path, speaker, language='English', speed=1.0):
|
|
mark = self.language_marks.get(language.lower(), None)
|
|
assert mark is not None, f"language {language} is not supported"
|
|
|
|
texts = self.split_sentences_into_pieces(text, mark)
|
|
|
|
audio_list = []
|
|
for t in texts:
|
|
t = re.sub(r'([a-z])([A-Z])', r'\1 \2', t)
|
|
t = f'[{mark}]{t}[{mark}]'
|
|
stn_tst = self.get_text(t, self.hps, False)
|
|
device = self.device
|
|
speaker_id = self.hps.speakers[speaker]
|
|
with torch.no_grad():
|
|
x_tst = stn_tst.unsqueeze(0).to(device)
|
|
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
|
|
sid = torch.LongTensor([speaker_id]).to(device)
|
|
audio = self.model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.6,
|
|
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
|
|
audio_list.append(audio)
|
|
audio = self.audio_numpy_concat(audio_list, sr=self.hps.data.sampling_rate, speed=speed)
|
|
|
|
if output_path is None:
|
|
return audio
|
|
else:
|
|
soundfile.write(output_path, audio, self.hps.data.sampling_rate)
|
|
|
|
|
|
class ToneColorConverter(OpenVoiceBaseClass):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.version = getattr(self.hps, '_version_', "v1")
|
|
|
|
|
|
|
|
def extract_se(self, waves, wave_lengths):
|
|
|
|
device = self.device
|
|
hps = self.hps
|
|
gs = []
|
|
|
|
for wav_tensor, wav_len in zip(waves, wave_lengths):
|
|
y = wav_tensor[:wav_len]
|
|
y = y[None, :]
|
|
y = spectrogram_torch(y, hps.data.filter_length,
|
|
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
|
center=False).to(device)
|
|
with torch.no_grad():
|
|
g = self.model.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
|
gs.append(g.detach())
|
|
gs = torch.stack(gs)
|
|
gs = gs.squeeze(1).squeeze(-1)
|
|
return gs
|
|
|
|
def convert(self, src_waves, src_wave_lengths, src_se, tgt_se, tau=0.3, message="default"):
|
|
hps = self.hps
|
|
|
|
with torch.no_grad():
|
|
y = src_waves
|
|
spec = spectrogram_torch(y, hps.data.filter_length,
|
|
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
|
center=False).to(self.device)
|
|
spec_lengths = src_wave_lengths // hps.data.hop_length
|
|
spec_lengths = spec_lengths.clamp(min=1, max=spec.size(2))
|
|
audio = self.model.voice_conversion(spec, spec_lengths, sid_src=src_se.unsqueeze(-1), sid_tgt=tgt_se.unsqueeze(-1), tau=tau)[0]
|
|
return audio
|
|
|
|
def add_watermark(self, audio, message):
|
|
|
|
return audio
|
|
device = self.device
|
|
bits = utils.string_to_bits(message).reshape(-1)
|
|
n_repeat = len(bits) // 32
|
|
|
|
K = 16000
|
|
coeff = 2
|
|
for n in range(n_repeat):
|
|
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K]
|
|
if len(trunck) != K:
|
|
print('Audio too short, fail to add watermark')
|
|
break
|
|
message_npy = bits[n * 32: (n + 1) * 32]
|
|
|
|
with torch.no_grad():
|
|
signal = torch.FloatTensor(trunck).to(device)[None]
|
|
message_tensor = torch.FloatTensor(message_npy).to(device)[None]
|
|
signal_wmd_tensor = self.watermark_model.encode(signal, message_tensor)
|
|
signal_wmd_npy = signal_wmd_tensor.detach().cpu().squeeze()
|
|
audio[(coeff * n) * K: (coeff * n + 1) * K] = signal_wmd_npy
|
|
return audio
|
|
|
|
def detect_watermark(self, audio, n_repeat):
|
|
bits = []
|
|
K = 16000
|
|
coeff = 2
|
|
for n in range(n_repeat):
|
|
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K]
|
|
if len(trunck) != K:
|
|
print('Audio too short, fail to detect watermark')
|
|
return 'Fail'
|
|
with torch.no_grad():
|
|
signal = torch.FloatTensor(trunck).to(self.device).unsqueeze(0)
|
|
message_decoded_npy = (self.watermark_model.decode(signal) >= 0.5).int().detach().cpu().numpy().squeeze()
|
|
bits.append(message_decoded_npy)
|
|
bits = np.stack(bits).reshape(-1, 8)
|
|
message = utils.bits_to_string(bits)
|
|
return message
|
|
|
|
|