|
from typing import List, Tuple
|
|
|
|
import torch
|
|
import torchaudio
|
|
from torch import nn
|
|
|
|
from vocos.modules import safe_log
|
|
|
|
|
|
class MelSpecReconstructionLoss(nn.Module):
|
|
"""
|
|
L1 distance between the mel-scaled magnitude spectrograms of the ground truth sample and the generated sample
|
|
"""
|
|
|
|
def __init__(
|
|
self, sample_rate: int = 24000, n_fft: int = 1024, hop_length: int = 256, n_mels: int = 100,
|
|
):
|
|
super().__init__()
|
|
self.mel_spec = torchaudio.transforms.MelSpectrogram(
|
|
sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels, center=True, power=1,
|
|
)
|
|
|
|
def forward(self, y_hat, y) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
y_hat (Tensor): Predicted audio waveform.
|
|
y (Tensor): Ground truth audio waveform.
|
|
|
|
Returns:
|
|
Tensor: L1 loss between the mel-scaled magnitude spectrograms.
|
|
"""
|
|
mel_hat = safe_log(self.mel_spec(y_hat))
|
|
mel = safe_log(self.mel_spec(y))
|
|
|
|
loss = torch.nn.functional.l1_loss(mel, mel_hat)
|
|
|
|
return loss
|
|
|
|
|
|
class GeneratorLoss(nn.Module):
|
|
"""
|
|
Generator Loss module. Calculates the loss for the generator based on discriminator outputs.
|
|
"""
|
|
|
|
def forward(self, disc_outputs: List[torch.Tensor]) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
|
"""
|
|
Args:
|
|
disc_outputs (List[Tensor]): List of discriminator outputs.
|
|
|
|
Returns:
|
|
Tuple[Tensor, List[Tensor]]: Tuple containing the total loss and a list of loss values from
|
|
the sub-discriminators
|
|
"""
|
|
loss = torch.zeros(1, device=disc_outputs[0].device, dtype=disc_outputs[0].dtype)
|
|
gen_losses = []
|
|
for dg in disc_outputs:
|
|
l = torch.mean(torch.clamp(1 - dg, min=0))
|
|
gen_losses.append(l)
|
|
loss += l
|
|
|
|
return loss, gen_losses
|
|
|
|
|
|
class DiscriminatorLoss(nn.Module):
|
|
"""
|
|
Discriminator Loss module. Calculates the loss for the discriminator based on real and generated outputs.
|
|
"""
|
|
|
|
def forward(
|
|
self, disc_real_outputs: List[torch.Tensor], disc_generated_outputs: List[torch.Tensor]
|
|
) -> Tuple[torch.Tensor, List[torch.Tensor], List[torch.Tensor]]:
|
|
"""
|
|
Args:
|
|
disc_real_outputs (List[Tensor]): List of discriminator outputs for real samples.
|
|
disc_generated_outputs (List[Tensor]): List of discriminator outputs for generated samples.
|
|
|
|
Returns:
|
|
Tuple[Tensor, List[Tensor], List[Tensor]]: A tuple containing the total loss, a list of loss values from
|
|
the sub-discriminators for real outputs, and a list of
|
|
loss values for generated outputs.
|
|
"""
|
|
loss = torch.zeros(1, device=disc_real_outputs[0].device, dtype=disc_real_outputs[0].dtype)
|
|
r_losses = []
|
|
g_losses = []
|
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
|
r_loss = torch.mean(torch.clamp(1 - dr, min=0))
|
|
g_loss = torch.mean(torch.clamp(1 + dg, min=0))
|
|
loss += r_loss + g_loss
|
|
r_losses.append(r_loss)
|
|
g_losses.append(g_loss)
|
|
|
|
return loss, r_losses, g_losses
|
|
|
|
|
|
class FeatureMatchingLoss(nn.Module):
|
|
"""
|
|
Feature Matching Loss module. Calculates the feature matching loss between feature maps of the sub-discriminators.
|
|
"""
|
|
|
|
def forward(self, fmap_r: List[List[torch.Tensor]], fmap_g: List[List[torch.Tensor]]) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
fmap_r (List[List[Tensor]]): List of feature maps from real samples.
|
|
fmap_g (List[List[Tensor]]): List of feature maps from generated samples.
|
|
|
|
Returns:
|
|
Tensor: The calculated feature matching loss.
|
|
"""
|
|
loss = torch.zeros(1, device=fmap_r[0][0].device, dtype=fmap_r[0][0].dtype)
|
|
for dr, dg in zip(fmap_r, fmap_g):
|
|
for rl, gl in zip(dr, dg):
|
|
loss += torch.mean(torch.abs(rl - gl))
|
|
|
|
return loss
|
|
|