|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn.utils import weight_norm, remove_weight_norm
|
|
|
|
|
|
class ConvNeXtBlock(nn.Module):
|
|
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
intermediate_dim (int): Dimensionality of the intermediate layer.
|
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
|
Defaults to None.
|
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
|
|
None means non-conditional LayerNorm. Defaults to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
intermediate_dim: int,
|
|
layer_scale_init_value: float,
|
|
adanorm_num_embeddings: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=3, groups=dim)
|
|
self.adanorm = adanorm_num_embeddings is not None
|
|
if adanorm_num_embeddings:
|
|
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
|
|
else:
|
|
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
|
self.pwconv1 = nn.Linear(dim, intermediate_dim)
|
|
self.act = nn.GELU()
|
|
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
|
self.gamma = (
|
|
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
|
|
if layer_scale_init_value > 0
|
|
else None
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
residual = x
|
|
x = self.dwconv(x)
|
|
x = x.transpose(1, 2)
|
|
if self.adanorm:
|
|
assert cond_embedding_id is not None
|
|
x = self.norm(x, cond_embedding_id)
|
|
else:
|
|
x = self.norm(x)
|
|
x = self.pwconv1(x)
|
|
x = self.act(x)
|
|
x = self.pwconv2(x)
|
|
if self.gamma is not None:
|
|
x = self.gamma * x
|
|
x = x.transpose(1, 2)
|
|
|
|
x = residual + x
|
|
return x
|
|
|
|
|
|
class AdaLayerNorm(nn.Module):
|
|
"""
|
|
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes
|
|
|
|
Args:
|
|
num_embeddings (int): Number of embeddings.
|
|
embedding_dim (int): Dimension of the embeddings.
|
|
"""
|
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.dim = embedding_dim
|
|
self.scale = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
|
|
self.shift = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
|
|
torch.nn.init.ones_(self.scale.weight)
|
|
torch.nn.init.zeros_(self.shift.weight)
|
|
|
|
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor:
|
|
scale = self.scale(cond_embedding_id)
|
|
shift = self.shift(cond_embedding_id)
|
|
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps)
|
|
x = x * scale + shift
|
|
return x
|
|
|
|
|
|
class ResBlock1(nn.Module):
|
|
"""
|
|
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions,
|
|
but without upsampling layers.
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3.
|
|
dilation (tuple[int], optional): Dilation factors for the dilated convolutions.
|
|
Defaults to (1, 3, 5).
|
|
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function.
|
|
Defaults to 0.1.
|
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
|
Defaults to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
kernel_size: int = 3,
|
|
dilation: Tuple[int, int, int] = (1, 3, 5),
|
|
lrelu_slope: float = 0.1,
|
|
layer_scale_init_value: Optional[float] = None,
|
|
):
|
|
super().__init__()
|
|
self.lrelu_slope = lrelu_slope
|
|
self.convs1 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=self.get_padding(kernel_size, dilation[0]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=self.get_padding(kernel_size, dilation[1]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[2],
|
|
padding=self.get_padding(kernel_size, dilation[2]),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
|
|
self.convs2 = nn.ModuleList(
|
|
[
|
|
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))),
|
|
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))),
|
|
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))),
|
|
]
|
|
)
|
|
|
|
self.gamma = nn.ParameterList(
|
|
[
|
|
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True)
|
|
if layer_scale_init_value is not None
|
|
else None,
|
|
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True)
|
|
if layer_scale_init_value is not None
|
|
else None,
|
|
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True)
|
|
if layer_scale_init_value is not None
|
|
else None,
|
|
]
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma):
|
|
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope)
|
|
xt = c1(xt)
|
|
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope)
|
|
xt = c2(xt)
|
|
if gamma is not None:
|
|
xt = gamma * xt
|
|
x = xt + x
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs1:
|
|
remove_weight_norm(l)
|
|
for l in self.convs2:
|
|
remove_weight_norm(l)
|
|
|
|
@staticmethod
|
|
def get_padding(kernel_size: int, dilation: int = 1) -> int:
|
|
return int((kernel_size * dilation - dilation) / 2)
|
|
|
|
|
|
def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor:
|
|
"""
|
|
Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values.
|
|
|
|
Args:
|
|
x (Tensor): Input tensor.
|
|
clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7.
|
|
|
|
Returns:
|
|
Tensor: Element-wise logarithm of the input tensor with clipping applied.
|
|
"""
|
|
return torch.log(torch.clip(x, min=clip_val))
|
|
|
|
|
|
def symlog(x: torch.Tensor) -> torch.Tensor:
|
|
return torch.sign(x) * torch.log1p(x.abs())
|
|
|
|
|
|
def symexp(x: torch.Tensor) -> torch.Tensor:
|
|
return torch.sign(x) * (torch.exp(x.abs()) - 1)
|
|
|