|
import os
|
|
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
|
|
import torch
|
|
import random
|
|
import librosa
|
|
import yaml
|
|
import argparse
|
|
import torchaudio
|
|
import torchaudio.compliance.kaldi as kaldi
|
|
import glob
|
|
from tqdm import tqdm
|
|
|
|
from modules.commons import recursive_munch, build_model, load_checkpoint
|
|
from optimizers import build_optimizer
|
|
from data.ft_dataset import build_ft_dataloader
|
|
from hf_utils import load_custom_model_from_hf
|
|
|
|
|
|
|
|
|
|
class Trainer:
|
|
def __init__(self,
|
|
config_path,
|
|
pretrained_ckpt_path,
|
|
data_dir,
|
|
run_name,
|
|
batch_size=0,
|
|
num_workers=0,
|
|
steps=1000,
|
|
save_interval=500,
|
|
max_epochs=1000,
|
|
device="cuda:0",
|
|
):
|
|
self.device = device
|
|
config = yaml.safe_load(open(config_path))
|
|
self.log_dir = os.path.join(config['log_dir'], run_name)
|
|
os.makedirs(self.log_dir, exist_ok=True)
|
|
|
|
os.system(f'cp {config_path} {self.log_dir}')
|
|
batch_size = config.get('batch_size', 10) if batch_size == 0 else batch_size
|
|
self.max_steps = steps
|
|
|
|
self.n_epochs = max_epochs
|
|
self.log_interval = config.get('log_interval', 10)
|
|
self.save_interval = save_interval
|
|
|
|
self.sr = config['preprocess_params'].get('sr', 22050)
|
|
self.hop_length = config['preprocess_params']['spect_params'].get('hop_length', 256)
|
|
self.win_length = config['preprocess_params']['spect_params'].get('win_length', 1024)
|
|
self.n_fft = config['preprocess_params']['spect_params'].get('n_fft', 1024)
|
|
preprocess_params = config['preprocess_params']
|
|
|
|
self.train_dataloader = build_ft_dataloader(
|
|
data_dir,
|
|
preprocess_params['spect_params'],
|
|
self.sr,
|
|
batch_size=batch_size,
|
|
num_workers=num_workers,
|
|
)
|
|
self.f0_condition = config['model_params']['DiT'].get('f0_condition', False)
|
|
self.build_sv_model(device, config)
|
|
self.build_semantic_fn(device, config)
|
|
if self.f0_condition:
|
|
self.build_f0_fn(device, config)
|
|
self.build_converter(device, config)
|
|
self.build_vocoder(device, config)
|
|
|
|
scheduler_params = {
|
|
"warmup_steps": 0,
|
|
"base_lr": 0.00001,
|
|
}
|
|
|
|
self.model_params = recursive_munch(config['model_params'])
|
|
self.model = build_model(self.model_params, stage='DiT')
|
|
|
|
_ = [self.model[key].to(device) for key in self.model]
|
|
self.model.cfm.estimator.setup_caches(max_batch_size=batch_size, max_seq_length=8192)
|
|
|
|
|
|
self.optimizer = build_optimizer({key: self.model[key] for key in self.model},
|
|
lr=float(scheduler_params['base_lr']))
|
|
|
|
if pretrained_ckpt_path is None:
|
|
|
|
available_checkpoints = glob.glob(os.path.join(self.log_dir, "DiT_epoch_*_step_*.pth"))
|
|
if len(available_checkpoints) > 0:
|
|
|
|
latest_checkpoint = max(
|
|
available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0])
|
|
)
|
|
earliest_checkpoint = min(
|
|
available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0])
|
|
)
|
|
|
|
if (
|
|
earliest_checkpoint != latest_checkpoint
|
|
and len(available_checkpoints) > 2
|
|
):
|
|
os.remove(earliest_checkpoint)
|
|
print(f"Removed {earliest_checkpoint}")
|
|
elif config.get('pretrained_model', ''):
|
|
latest_checkpoint = load_custom_model_from_hf("Plachta/Seed-VC", config['pretrained_model'], None)
|
|
else:
|
|
latest_checkpoint = ""
|
|
else:
|
|
assert os.path.exists(pretrained_ckpt_path), f"Pretrained checkpoint {pretrained_ckpt_path} not found"
|
|
latest_checkpoint = pretrained_ckpt_path
|
|
|
|
if os.path.exists(latest_checkpoint):
|
|
self.model, self.optimizer, self.epoch, self.iters = load_checkpoint(self.model, self.optimizer, latest_checkpoint,
|
|
load_only_params=True,
|
|
ignore_modules=[],
|
|
is_distributed=False)
|
|
print(f"Loaded checkpoint from {latest_checkpoint}")
|
|
else:
|
|
self.epoch, self.iters = 0, 0
|
|
print("Failed to load any checkpoint, this implies you are training from scratch.")
|
|
def build_sv_model(self, device, config):
|
|
|
|
from modules.campplus.DTDNN import CAMPPlus
|
|
self.campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
|
|
campplus_sd_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
|
|
campplus_sd = torch.load(campplus_sd_path, map_location='cpu')
|
|
self.campplus_model.load_state_dict(campplus_sd)
|
|
self.campplus_model.eval()
|
|
self.campplus_model.to(device)
|
|
self.sv_fn = self.campplus_model
|
|
def build_f0_fn(self, device, config):
|
|
from modules.rmvpe import RMVPE
|
|
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
|
|
self.rmvpe = RMVPE(model_path, is_half=False, device=device)
|
|
self.f0_fn = self.rmvpe
|
|
def build_converter(self, device, config):
|
|
|
|
from modules.openvoice.api import ToneColorConverter
|
|
ckpt_converter, config_converter = load_custom_model_from_hf("myshell-ai/OpenVoiceV2", "converter/checkpoint.pth", "converter/config.json")
|
|
self.tone_color_converter = ToneColorConverter(config_converter, device=device,)
|
|
self.tone_color_converter.load_ckpt(ckpt_converter)
|
|
self.tone_color_converter.model.eval()
|
|
se_db_path = load_custom_model_from_hf("Plachta/Seed-VC", "se_db.pt", None)
|
|
self.se_db = torch.load(se_db_path, map_location='cpu')
|
|
|
|
def build_vocoder(self, device, config):
|
|
vocoder_type = config['model_params']['vocoder']['type']
|
|
vocoder_name = config['model_params']['vocoder'].get('name', None)
|
|
if vocoder_type == 'bigvgan':
|
|
from modules.bigvgan import bigvgan
|
|
bigvgan_name = vocoder_name
|
|
self.bigvgan_model = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=False)
|
|
|
|
self.bigvgan_model.remove_weight_norm()
|
|
self.bigvgan_model = self.bigvgan_model.eval().to(device)
|
|
vocoder_fn = self.bigvgan_model
|
|
elif vocoder_type == 'hifigan':
|
|
from modules.hifigan.generator import HiFTGenerator
|
|
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
|
|
hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r'))
|
|
hift_path = load_custom_model_from_hf("FunAudioLLM/CosyVoice-300M", 'hift.pt', None)
|
|
self.hift_gen = HiFTGenerator(**hift_config['hift'],
|
|
f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
|
|
self.hift_gen.load_state_dict(torch.load(hift_path, map_location='cpu'))
|
|
self.hift_gen.eval()
|
|
self.hift_gen.to(device)
|
|
vocoder_fn = self.hift_gen
|
|
else:
|
|
raise ValueError(f"Unsupported vocoder type: {vocoder_type}")
|
|
self.vocoder_fn = vocoder_fn
|
|
|
|
def build_semantic_fn(self, device, config):
|
|
|
|
speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice')
|
|
if speech_tokenizer_type == 'whisper':
|
|
from transformers import AutoFeatureExtractor, WhisperModel
|
|
whisper_model_name = config['model_params']['speech_tokenizer']['name']
|
|
self.whisper_model = WhisperModel.from_pretrained(whisper_model_name).to(device)
|
|
self.whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_model_name)
|
|
del self.whisper_model.decoder
|
|
def semantic_fn(waves_16k):
|
|
ori_inputs = self.whisper_feature_extractor([w16k.cpu().numpy() for w16k in waves_16k],
|
|
return_tensors="pt",
|
|
return_attention_mask=True,
|
|
sampling_rate=16000,)
|
|
ori_input_features = self.whisper_model._mask_input_features(
|
|
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
|
|
with torch.no_grad():
|
|
ori_outputs = self.whisper_model.encoder(
|
|
ori_input_features.to(self.whisper_model.encoder.dtype),
|
|
head_mask=None,
|
|
output_attentions=False,
|
|
output_hidden_states=False,
|
|
return_dict=True,
|
|
)
|
|
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
|
|
S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1]
|
|
return S_ori
|
|
elif speech_tokenizer_type == 'xlsr':
|
|
from transformers import (
|
|
Wav2Vec2FeatureExtractor,
|
|
Wav2Vec2Model,
|
|
)
|
|
model_name = config['model_params']['speech_tokenizer']['name']
|
|
output_layer = config['model_params']['speech_tokenizer']['output_layer']
|
|
self.wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
|
self.wav2vec_model = Wav2Vec2Model.from_pretrained(model_name)
|
|
self.wav2vec_model.encoder.layers = self.wav2vec_model.encoder.layers[:output_layer]
|
|
self.wav2vec_model = self.wav2vec_model.to(device)
|
|
self.wav2vec_model = self.wav2vec_model.eval()
|
|
self.wav2vec_model = self.wav2vec_model.half()
|
|
|
|
def semantic_fn(waves_16k):
|
|
ori_waves_16k_input_list = [
|
|
waves_16k[bib].cpu().numpy()
|
|
for bib in range(len(waves_16k))
|
|
]
|
|
ori_inputs = self.wav2vec_feature_extractor(ori_waves_16k_input_list,
|
|
return_tensors="pt",
|
|
return_attention_mask=True,
|
|
padding=True,
|
|
sampling_rate=16000).to(device)
|
|
with torch.no_grad():
|
|
ori_outputs = self.wav2vec_model(
|
|
ori_inputs.input_values.half(),
|
|
)
|
|
S_ori = ori_outputs.last_hidden_state.float()
|
|
return S_ori
|
|
else:
|
|
raise ValueError(f"Unsupported speech tokenizer type: {speech_tokenizer_type}")
|
|
self.semantic_fn = semantic_fn
|
|
|
|
def train_one_step(self, batch):
|
|
waves, mels, wave_lengths, mel_input_length = batch
|
|
|
|
B = waves.size(0)
|
|
target_size = mels.size(2)
|
|
target = mels
|
|
target_lengths = mel_input_length
|
|
|
|
|
|
if self.sr != 22050:
|
|
waves_22k = torchaudio.functional.resample(waves, self.sr, 22050)
|
|
wave_lengths_22k = (wave_lengths.float() * 22050 / self.sr).long()
|
|
else:
|
|
waves_22k = waves
|
|
wave_lengths_22k = wave_lengths
|
|
se_batch = self.tone_color_converter.extract_se(waves_22k, wave_lengths_22k)
|
|
|
|
ref_se_idx = torch.randint(0, len(self.se_db), (B,))
|
|
ref_se = self.se_db[ref_se_idx]
|
|
ref_se = ref_se.to(self.device)
|
|
|
|
|
|
converted_waves_22k = self.tone_color_converter.convert(waves_22k, wave_lengths_22k, se_batch, ref_se).squeeze(1)
|
|
|
|
if self.sr != 22050:
|
|
converted_waves = torchaudio.functional.resample(converted_waves_22k, 22050, self.sr)
|
|
else:
|
|
converted_waves = converted_waves_22k
|
|
|
|
waves_16k = torchaudio.functional.resample(waves, self.sr, 16000)
|
|
wave_lengths_16k = (wave_lengths.float() * 16000 / self.sr).long()
|
|
converted_waves_16k = torchaudio.functional.resample(converted_waves, self.sr, 16000)
|
|
|
|
S_ori = self.semantic_fn(waves_16k)
|
|
S_alt = self.semantic_fn(converted_waves_16k)
|
|
|
|
if self.f0_condition:
|
|
F0_ori = self.rmvpe.infer_from_audio_batch(waves_16k)
|
|
else:
|
|
F0_ori = None
|
|
|
|
alt_cond, _, alt_codes, alt_commitment_loss, alt_codebook_loss = (
|
|
self.model.length_regulator(S_alt, ylens=target_lengths, f0=F0_ori))
|
|
ori_cond, _, ori_codes, ori_commitment_loss, ori_codebook_loss = (
|
|
self.model.length_regulator(S_ori, ylens=target_lengths, f0=F0_ori))
|
|
if alt_commitment_loss is None:
|
|
alt_commitment_loss = 0
|
|
alt_codebook_loss = 0
|
|
ori_commitment_loss = 0
|
|
ori_codebook_loss = 0
|
|
|
|
|
|
prompt_len_max = target_lengths - 1
|
|
prompt_len = (torch.rand([B], device=alt_cond.device) * prompt_len_max).floor().to(dtype=torch.long)
|
|
prompt_len[torch.rand([B], device=alt_cond.device) < 0.1] = 0
|
|
|
|
|
|
cond = alt_cond.clone()
|
|
for bib in range(B):
|
|
cond[bib, :prompt_len[bib]] = ori_cond[bib, :prompt_len[bib]]
|
|
|
|
|
|
common_min_len = min(target_size, cond.size(1))
|
|
target = target[:, :, :common_min_len]
|
|
cond = cond[:, :common_min_len]
|
|
target_lengths = torch.clamp(target_lengths, max=common_min_len)
|
|
x = target
|
|
|
|
feat_list = []
|
|
for bib in range(B):
|
|
feat = kaldi.fbank(waves_16k[bib:bib + 1, :wave_lengths_16k[bib]],
|
|
num_mel_bins=80,
|
|
dither=0,
|
|
sample_frequency=16000)
|
|
feat = feat - feat.mean(dim=0, keepdim=True)
|
|
feat_list.append(feat)
|
|
max_feat_len = max([feat.size(0) for feat in feat_list])
|
|
feat_lens = torch.tensor([feat.size(0) for feat in feat_list], dtype=torch.int32).to(self.device) // 2
|
|
feat_list = [
|
|
torch.nn.functional.pad(feat, (0, 0, 0, max_feat_len - feat.size(0)), value=float(feat.min().item()))
|
|
for feat in feat_list
|
|
]
|
|
y_list = []
|
|
with torch.no_grad():
|
|
for feat in feat_list:
|
|
y = self.sv_fn(feat.unsqueeze(0))
|
|
y_list.append(y)
|
|
y = torch.cat(y_list, dim=0)
|
|
|
|
loss, _ = self.model.cfm(x, target_lengths, prompt_len, cond, y)
|
|
|
|
loss_total = (loss +
|
|
(alt_commitment_loss + ori_commitment_loss) * 0.05 +
|
|
(ori_codebook_loss + alt_codebook_loss) * 0.15)
|
|
|
|
self.optimizer.zero_grad()
|
|
loss_total.backward()
|
|
grad_norm_g = torch.nn.utils.clip_grad_norm_(self.model.cfm.parameters(), 10.0)
|
|
grad_norm_g2 = torch.nn.utils.clip_grad_norm_(self.model.length_regulator.parameters(), 10.0)
|
|
self.optimizer.step('cfm')
|
|
self.optimizer.step('length_regulator')
|
|
self.optimizer.scheduler(key='cfm')
|
|
self.optimizer.scheduler(key='length_regulator')
|
|
|
|
return loss.detach().item()
|
|
def train_one_epoch(self):
|
|
_ = [self.model[key].train() for key in self.model]
|
|
for i, batch in enumerate(tqdm(self.train_dataloader)):
|
|
batch = [b.to(self.device) for b in batch]
|
|
loss = self.train_one_step(batch)
|
|
self.ema_loss = self.ema_loss * self.loss_smoothing_rate + loss * (1 - self.loss_smoothing_rate) if self.iters > 0 else loss
|
|
if self.iters % self.log_interval == 0:
|
|
print(f"epoch {self.epoch}, step {self.iters}, loss: {self.ema_loss}")
|
|
self.iters += 1
|
|
if self.iters >= self.max_steps:
|
|
break
|
|
if self.iters % self.save_interval == 0:
|
|
print('Saving..')
|
|
state = {
|
|
'net': {key: self.model[key].state_dict() for key in self.model},
|
|
'optimizer': self.optimizer.state_dict(),
|
|
'scheduler': self.optimizer.scheduler_state_dict(),
|
|
'iters': self.iters,
|
|
'epoch': self.epoch,
|
|
}
|
|
save_path = os.path.join(self.log_dir, 'DiT_epoch_%05d_step_%05d.pth' % (self.epoch, self.iters))
|
|
torch.save(state, save_path)
|
|
|
|
|
|
checkpoints = glob.glob(os.path.join(self.log_dir, 'DiT_epoch_*.pth'))
|
|
if len(checkpoints) > 2:
|
|
|
|
checkpoints.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
|
|
for cp in checkpoints[:-2]:
|
|
os.remove(cp)
|
|
|
|
def train(self):
|
|
self.ema_loss = 0
|
|
self.loss_smoothing_rate = 0.99
|
|
for epoch in range(self.n_epochs):
|
|
self.epoch = epoch
|
|
self.train_one_epoch()
|
|
if self.iters >= self.max_steps:
|
|
break
|
|
print('Saving..')
|
|
state = {
|
|
'net': {key: self.model[key].state_dict() for key in self.model},
|
|
}
|
|
os.makedirs(self.log_dir, exist_ok=True)
|
|
save_path = os.path.join(self.log_dir, 'ft_model.pth')
|
|
torch.save(state, save_path)
|
|
|
|
def main(args):
|
|
trainer = Trainer(
|
|
config_path=args.config,
|
|
pretrained_ckpt_path=args.pretrained_ckpt,
|
|
data_dir=args.dataset_dir,
|
|
run_name=args.run_name,
|
|
batch_size=args.batch_size,
|
|
steps=args.max_steps,
|
|
max_epochs=args.max_epochs,
|
|
save_interval=args.save_every,
|
|
num_workers=args.num_workers,
|
|
)
|
|
trainer.train()
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--config', type=str, default='./configs/presets/config_dit_mel_seed_uvit_xlsr_tiny.yml')
|
|
parser.add_argument('--pretrained-ckpt', type=str, default=None)
|
|
parser.add_argument('--dataset-dir', type=str, default='/path/to/dataset')
|
|
parser.add_argument('--run-name', type=str, default='my_run')
|
|
parser.add_argument('--batch-size', type=int, default=2)
|
|
parser.add_argument('--max-steps', type=int, default=1000)
|
|
parser.add_argument('--max-epochs', type=int, default=1000)
|
|
parser.add_argument('--save-every', type=int, default=500)
|
|
parser.add_argument('--num-workers', type=int, default=0)
|
|
args = parser.parse_args()
|
|
main(args) |