seed-vc3 / train.py
soiz1's picture
Upload 123 files
20d6bb2 verified
import os
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
import torch
import random
import librosa
import yaml
import argparse
import torchaudio
import torchaudio.compliance.kaldi as kaldi
import glob
from tqdm import tqdm
from modules.commons import recursive_munch, build_model, load_checkpoint
from optimizers import build_optimizer
from data.ft_dataset import build_ft_dataloader
from hf_utils import load_custom_model_from_hf
class Trainer:
def __init__(self,
config_path,
pretrained_ckpt_path,
data_dir,
run_name,
batch_size=0,
num_workers=0,
steps=1000,
save_interval=500,
max_epochs=1000,
device="cuda:0",
):
self.device = device
config = yaml.safe_load(open(config_path))
self.log_dir = os.path.join(config['log_dir'], run_name)
os.makedirs(self.log_dir, exist_ok=True)
# copy config file to log dir
os.system(f'cp {config_path} {self.log_dir}')
batch_size = config.get('batch_size', 10) if batch_size == 0 else batch_size
self.max_steps = steps
self.n_epochs = max_epochs
self.log_interval = config.get('log_interval', 10)
self.save_interval = save_interval
self.sr = config['preprocess_params'].get('sr', 22050)
self.hop_length = config['preprocess_params']['spect_params'].get('hop_length', 256)
self.win_length = config['preprocess_params']['spect_params'].get('win_length', 1024)
self.n_fft = config['preprocess_params']['spect_params'].get('n_fft', 1024)
preprocess_params = config['preprocess_params']
self.train_dataloader = build_ft_dataloader(
data_dir,
preprocess_params['spect_params'],
self.sr,
batch_size=batch_size,
num_workers=num_workers,
)
self.f0_condition = config['model_params']['DiT'].get('f0_condition', False)
self.build_sv_model(device, config)
self.build_semantic_fn(device, config)
if self.f0_condition:
self.build_f0_fn(device, config)
self.build_converter(device, config)
self.build_vocoder(device, config)
scheduler_params = {
"warmup_steps": 0,
"base_lr": 0.00001,
}
self.model_params = recursive_munch(config['model_params'])
self.model = build_model(self.model_params, stage='DiT')
_ = [self.model[key].to(device) for key in self.model]
self.model.cfm.estimator.setup_caches(max_batch_size=batch_size, max_seq_length=8192)
# initialize optimizers after preparing models for compatibility with FSDP
self.optimizer = build_optimizer({key: self.model[key] for key in self.model},
lr=float(scheduler_params['base_lr']))
if pretrained_ckpt_path is None:
# find latest checkpoint with name pattern of 'T2V_epoch_*_step_*.pth'
available_checkpoints = glob.glob(os.path.join(self.log_dir, "DiT_epoch_*_step_*.pth"))
if len(available_checkpoints) > 0:
# find the checkpoint that has the highest step number
latest_checkpoint = max(
available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0])
)
earliest_checkpoint = min(
available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0])
)
# delete the earliest checkpoint
if (
earliest_checkpoint != latest_checkpoint
and len(available_checkpoints) > 2
):
os.remove(earliest_checkpoint)
print(f"Removed {earliest_checkpoint}")
elif config.get('pretrained_model', ''):
latest_checkpoint = load_custom_model_from_hf("Plachta/Seed-VC", config['pretrained_model'], None)
else:
latest_checkpoint = ""
else:
assert os.path.exists(pretrained_ckpt_path), f"Pretrained checkpoint {pretrained_ckpt_path} not found"
latest_checkpoint = pretrained_ckpt_path
if os.path.exists(latest_checkpoint):
self.model, self.optimizer, self.epoch, self.iters = load_checkpoint(self.model, self.optimizer, latest_checkpoint,
load_only_params=True,
ignore_modules=[],
is_distributed=False)
print(f"Loaded checkpoint from {latest_checkpoint}")
else:
self.epoch, self.iters = 0, 0
print("Failed to load any checkpoint, this implies you are training from scratch.")
def build_sv_model(self, device, config):
# speaker verification model
from modules.campplus.DTDNN import CAMPPlus
self.campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_sd_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_sd = torch.load(campplus_sd_path, map_location='cpu')
self.campplus_model.load_state_dict(campplus_sd)
self.campplus_model.eval()
self.campplus_model.to(device)
self.sv_fn = self.campplus_model
def build_f0_fn(self, device, config):
from modules.rmvpe import RMVPE
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
self.rmvpe = RMVPE(model_path, is_half=False, device=device)
self.f0_fn = self.rmvpe
def build_converter(self, device, config):
# speaker perturbation model
from modules.openvoice.api import ToneColorConverter
ckpt_converter, config_converter = load_custom_model_from_hf("myshell-ai/OpenVoiceV2", "converter/checkpoint.pth", "converter/config.json")
self.tone_color_converter = ToneColorConverter(config_converter, device=device,)
self.tone_color_converter.load_ckpt(ckpt_converter)
self.tone_color_converter.model.eval()
se_db_path = load_custom_model_from_hf("Plachta/Seed-VC", "se_db.pt", None)
self.se_db = torch.load(se_db_path, map_location='cpu')
def build_vocoder(self, device, config):
vocoder_type = config['model_params']['vocoder']['type']
vocoder_name = config['model_params']['vocoder'].get('name', None)
if vocoder_type == 'bigvgan':
from modules.bigvgan import bigvgan
bigvgan_name = vocoder_name
self.bigvgan_model = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=False)
# remove weight norm in the model and set to eval mode
self.bigvgan_model.remove_weight_norm()
self.bigvgan_model = self.bigvgan_model.eval().to(device)
vocoder_fn = self.bigvgan_model
elif vocoder_type == 'hifigan':
from modules.hifigan.generator import HiFTGenerator
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r'))
hift_path = load_custom_model_from_hf("FunAudioLLM/CosyVoice-300M", 'hift.pt', None)
self.hift_gen = HiFTGenerator(**hift_config['hift'],
f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
self.hift_gen.load_state_dict(torch.load(hift_path, map_location='cpu'))
self.hift_gen.eval()
self.hift_gen.to(device)
vocoder_fn = self.hift_gen
else:
raise ValueError(f"Unsupported vocoder type: {vocoder_type}")
self.vocoder_fn = vocoder_fn
def build_semantic_fn(self, device, config):
# speech tokenizer
speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice')
if speech_tokenizer_type == 'whisper':
from transformers import AutoFeatureExtractor, WhisperModel
whisper_model_name = config['model_params']['speech_tokenizer']['name']
self.whisper_model = WhisperModel.from_pretrained(whisper_model_name).to(device)
self.whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_model_name)
del self.whisper_model.decoder
def semantic_fn(waves_16k):
ori_inputs = self.whisper_feature_extractor([w16k.cpu().numpy() for w16k in waves_16k],
return_tensors="pt",
return_attention_mask=True,
sampling_rate=16000,)
ori_input_features = self.whisper_model._mask_input_features(
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
with torch.no_grad():
ori_outputs = self.whisper_model.encoder(
ori_input_features.to(self.whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1]
return S_ori
elif speech_tokenizer_type == 'xlsr':
from transformers import (
Wav2Vec2FeatureExtractor,
Wav2Vec2Model,
)
model_name = config['model_params']['speech_tokenizer']['name']
output_layer = config['model_params']['speech_tokenizer']['output_layer']
self.wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
self.wav2vec_model = Wav2Vec2Model.from_pretrained(model_name)
self.wav2vec_model.encoder.layers = self.wav2vec_model.encoder.layers[:output_layer]
self.wav2vec_model = self.wav2vec_model.to(device)
self.wav2vec_model = self.wav2vec_model.eval()
self.wav2vec_model = self.wav2vec_model.half()
def semantic_fn(waves_16k):
ori_waves_16k_input_list = [
waves_16k[bib].cpu().numpy()
for bib in range(len(waves_16k))
]
ori_inputs = self.wav2vec_feature_extractor(ori_waves_16k_input_list,
return_tensors="pt",
return_attention_mask=True,
padding=True,
sampling_rate=16000).to(device)
with torch.no_grad():
ori_outputs = self.wav2vec_model(
ori_inputs.input_values.half(),
)
S_ori = ori_outputs.last_hidden_state.float()
return S_ori
else:
raise ValueError(f"Unsupported speech tokenizer type: {speech_tokenizer_type}")
self.semantic_fn = semantic_fn
def train_one_step(self, batch):
waves, mels, wave_lengths, mel_input_length = batch
B = waves.size(0)
target_size = mels.size(2)
target = mels
target_lengths = mel_input_length
# get speaker embedding
if self.sr != 22050:
waves_22k = torchaudio.functional.resample(waves, self.sr, 22050)
wave_lengths_22k = (wave_lengths.float() * 22050 / self.sr).long()
else:
waves_22k = waves
wave_lengths_22k = wave_lengths
se_batch = self.tone_color_converter.extract_se(waves_22k, wave_lengths_22k)
ref_se_idx = torch.randint(0, len(self.se_db), (B,))
ref_se = self.se_db[ref_se_idx]
ref_se = ref_se.to(self.device)
# convert
converted_waves_22k = self.tone_color_converter.convert(waves_22k, wave_lengths_22k, se_batch, ref_se).squeeze(1)
if self.sr != 22050:
converted_waves = torchaudio.functional.resample(converted_waves_22k, 22050, self.sr)
else:
converted_waves = converted_waves_22k
waves_16k = torchaudio.functional.resample(waves, self.sr, 16000)
wave_lengths_16k = (wave_lengths.float() * 16000 / self.sr).long()
converted_waves_16k = torchaudio.functional.resample(converted_waves, self.sr, 16000)
# extract S_alt (perturbed speech tokens)
S_ori = self.semantic_fn(waves_16k)
S_alt = self.semantic_fn(converted_waves_16k)
if self.f0_condition:
F0_ori = self.rmvpe.infer_from_audio_batch(waves_16k)
else:
F0_ori = None
# interpolate speech token to match acoustic feature length
alt_cond, _, alt_codes, alt_commitment_loss, alt_codebook_loss = (
self.model.length_regulator(S_alt, ylens=target_lengths, f0=F0_ori))
ori_cond, _, ori_codes, ori_commitment_loss, ori_codebook_loss = (
self.model.length_regulator(S_ori, ylens=target_lengths, f0=F0_ori))
if alt_commitment_loss is None:
alt_commitment_loss = 0
alt_codebook_loss = 0
ori_commitment_loss = 0
ori_codebook_loss = 0
# randomly set a length as prompt
prompt_len_max = target_lengths - 1
prompt_len = (torch.rand([B], device=alt_cond.device) * prompt_len_max).floor().to(dtype=torch.long)
prompt_len[torch.rand([B], device=alt_cond.device) < 0.1] = 0
# for prompt cond token, it must be from ori_cond instead of alt_cond
cond = alt_cond.clone()
for bib in range(B):
cond[bib, :prompt_len[bib]] = ori_cond[bib, :prompt_len[bib]]
# diffusion target
common_min_len = min(target_size, cond.size(1))
target = target[:, :, :common_min_len]
cond = cond[:, :common_min_len]
target_lengths = torch.clamp(target_lengths, max=common_min_len)
x = target
# style vectors are extracted from prompt only to avoid inference time OOD
feat_list = []
for bib in range(B):
feat = kaldi.fbank(waves_16k[bib:bib + 1, :wave_lengths_16k[bib]],
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat = feat - feat.mean(dim=0, keepdim=True)
feat_list.append(feat)
max_feat_len = max([feat.size(0) for feat in feat_list])
feat_lens = torch.tensor([feat.size(0) for feat in feat_list], dtype=torch.int32).to(self.device) // 2
feat_list = [
torch.nn.functional.pad(feat, (0, 0, 0, max_feat_len - feat.size(0)), value=float(feat.min().item()))
for feat in feat_list
]
y_list = []
with torch.no_grad():
for feat in feat_list:
y = self.sv_fn(feat.unsqueeze(0))
y_list.append(y)
y = torch.cat(y_list, dim=0)
loss, _ = self.model.cfm(x, target_lengths, prompt_len, cond, y)
loss_total = (loss +
(alt_commitment_loss + ori_commitment_loss) * 0.05 +
(ori_codebook_loss + alt_codebook_loss) * 0.15)
self.optimizer.zero_grad()
loss_total.backward()
grad_norm_g = torch.nn.utils.clip_grad_norm_(self.model.cfm.parameters(), 10.0)
grad_norm_g2 = torch.nn.utils.clip_grad_norm_(self.model.length_regulator.parameters(), 10.0)
self.optimizer.step('cfm')
self.optimizer.step('length_regulator')
self.optimizer.scheduler(key='cfm')
self.optimizer.scheduler(key='length_regulator')
return loss.detach().item()
def train_one_epoch(self):
_ = [self.model[key].train() for key in self.model]
for i, batch in enumerate(tqdm(self.train_dataloader)):
batch = [b.to(self.device) for b in batch]
loss = self.train_one_step(batch)
self.ema_loss = self.ema_loss * self.loss_smoothing_rate + loss * (1 - self.loss_smoothing_rate) if self.iters > 0 else loss
if self.iters % self.log_interval == 0:
print(f"epoch {self.epoch}, step {self.iters}, loss: {self.ema_loss}")
self.iters += 1
if self.iters >= self.max_steps:
break
if self.iters % self.save_interval == 0:
print('Saving..')
state = {
'net': {key: self.model[key].state_dict() for key in self.model},
'optimizer': self.optimizer.state_dict(),
'scheduler': self.optimizer.scheduler_state_dict(),
'iters': self.iters,
'epoch': self.epoch,
}
save_path = os.path.join(self.log_dir, 'DiT_epoch_%05d_step_%05d.pth' % (self.epoch, self.iters))
torch.save(state, save_path)
# find all checkpoints and remove old ones
checkpoints = glob.glob(os.path.join(self.log_dir, 'DiT_epoch_*.pth'))
if len(checkpoints) > 2:
# sort by step
checkpoints.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
for cp in checkpoints[:-2]:
os.remove(cp)
def train(self):
self.ema_loss = 0
self.loss_smoothing_rate = 0.99
for epoch in range(self.n_epochs):
self.epoch = epoch
self.train_one_epoch()
if self.iters >= self.max_steps:
break
print('Saving..')
state = {
'net': {key: self.model[key].state_dict() for key in self.model},
}
os.makedirs(self.log_dir, exist_ok=True)
save_path = os.path.join(self.log_dir, 'ft_model.pth')
torch.save(state, save_path)
def main(args):
trainer = Trainer(
config_path=args.config,
pretrained_ckpt_path=args.pretrained_ckpt,
data_dir=args.dataset_dir,
run_name=args.run_name,
batch_size=args.batch_size,
steps=args.max_steps,
max_epochs=args.max_epochs,
save_interval=args.save_every,
num_workers=args.num_workers,
)
trainer.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='./configs/presets/config_dit_mel_seed_uvit_xlsr_tiny.yml')
parser.add_argument('--pretrained-ckpt', type=str, default=None)
parser.add_argument('--dataset-dir', type=str, default='/path/to/dataset')
parser.add_argument('--run-name', type=str, default='my_run')
parser.add_argument('--batch-size', type=int, default=2)
parser.add_argument('--max-steps', type=int, default=1000)
parser.add_argument('--max-epochs', type=int, default=1000)
parser.add_argument('--save-every', type=int, default=500)
parser.add_argument('--num-workers', type=int, default=0)
args = parser.parse_args()
main(args)