File size: 4,587 Bytes
7e73fec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import ldm_patched.modules.model_management
import contextlib


@contextlib.contextmanager
def use_patched_ops(operations):
    op_names = ['Linear', 'Conv2d', 'Conv3d', 'GroupNorm', 'LayerNorm']
    backups = {op_name: getattr(torch.nn, op_name) for op_name in op_names}

    try:
        for op_name in op_names:
            setattr(torch.nn, op_name, getattr(operations, op_name))

        yield

    finally:
        for op_name in op_names:
            setattr(torch.nn, op_name, backups[op_name])
    return


def cast_bias_weight(s, input):
    bias = None
    non_blocking = ldm_patched.modules.model_management.device_supports_non_blocking(input.device)
    if s.bias is not None:
        bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
    weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
    return weight, bias


class disable_weight_init:
    class Linear(torch.nn.Linear):
        ldm_patched_cast_weights = False
        def reset_parameters(self):
            return None

        def forward_ldm_patched_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.linear(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.ldm_patched_cast_weights:
                return self.forward_ldm_patched_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Conv2d(torch.nn.Conv2d):
        ldm_patched_cast_weights = False
        def reset_parameters(self):
            return None

        def forward_ldm_patched_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.ldm_patched_cast_weights:
                return self.forward_ldm_patched_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Conv3d(torch.nn.Conv3d):
        ldm_patched_cast_weights = False
        def reset_parameters(self):
            return None

        def forward_ldm_patched_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.ldm_patched_cast_weights:
                return self.forward_ldm_patched_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class GroupNorm(torch.nn.GroupNorm):
        ldm_patched_cast_weights = False
        def reset_parameters(self):
            return None

        def forward_ldm_patched_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)

        def forward(self, *args, **kwargs):
            if self.ldm_patched_cast_weights:
                return self.forward_ldm_patched_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)


    class LayerNorm(torch.nn.LayerNorm):
        ldm_patched_cast_weights = False
        def reset_parameters(self):
            return None

        def forward_ldm_patched_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)

        def forward(self, *args, **kwargs):
            if self.ldm_patched_cast_weights:
                return self.forward_ldm_patched_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    @classmethod
    def conv_nd(s, dims, *args, **kwargs):
        if dims == 2:
            return s.Conv2d(*args, **kwargs)
        elif dims == 3:
            return s.Conv3d(*args, **kwargs)
        else:
            raise ValueError(f"unsupported dimensions: {dims}")


class manual_cast(disable_weight_init):
    class Linear(disable_weight_init.Linear):
        ldm_patched_cast_weights = True

    class Conv2d(disable_weight_init.Conv2d):
        ldm_patched_cast_weights = True

    class Conv3d(disable_weight_init.Conv3d):
        ldm_patched_cast_weights = True

    class GroupNorm(disable_weight_init.GroupNorm):
        ldm_patched_cast_weights = True

    class LayerNorm(disable_weight_init.LayerNorm):
        ldm_patched_cast_weights = True