File size: 20,929 Bytes
7e73fec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import os
from typing import Dict, Optional, Tuple, List, Union

import cv2
import torch

import modules.scripts as scripts
from modules import shared, script_callbacks, masking, images
from modules.ui_components import InputAccordion
from modules.api.api import decode_base64_to_image
import gradio as gr

from lib_controlnet import global_state, external_code
from lib_controlnet.utils import align_dim_latent, image_dict_from_any, set_numpy_seed, crop_and_resize_image, \
    prepare_mask, judge_image_type
from lib_controlnet.controlnet_ui.controlnet_ui_group import ControlNetUiGroup, UiControlNetUnit
from lib_controlnet.controlnet_ui.photopea import Photopea
from lib_controlnet.logging import logger
from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img, \
    StableDiffusionProcessing
from lib_controlnet.infotext import Infotext
from modules_forge.forge_util import HWC3, numpy_to_pytorch

import numpy as np
import functools

from PIL import Image
from modules_forge.shared import try_load_supported_control_model
from modules_forge.supported_controlnet import ControlModelPatcher

# Gradio 3.32 bug fix
import tempfile

gradio_tempfile_path = os.path.join(tempfile.gettempdir(), 'gradio')
os.makedirs(gradio_tempfile_path, exist_ok=True)

global_state.update_controlnet_filenames()


@functools.lru_cache(maxsize=shared.opts.data.get("control_net_model_cache_size", 5))
def cached_controlnet_loader(filename):
    return try_load_supported_control_model(filename)


class ControlNetCachedParameters:
    def __init__(self):
        self.preprocessor = None
        self.model = None
        self.control_cond = None
        self.control_cond_for_hr_fix = None
        self.control_mask = None
        self.control_mask_for_hr_fix = None


class ControlNetForForgeOfficial(scripts.Script):
    def title(self):
        return "ControlNet"

    def show(self, is_img2img):
        return scripts.AlwaysVisible

    def ui(self, is_img2img):
        infotext = Infotext()
        ui_groups = []
        controls = []
        max_models = shared.opts.data.get("control_net_unit_count", 3)
        gen_type = "img2img" if is_img2img else "txt2img"
        elem_id_tabname = gen_type + "_controlnet"
        default_unit = UiControlNetUnit(enabled=False, module="None", model="None")
        with gr.Group(elem_id=elem_id_tabname):
            with gr.Accordion(f"ControlNet Integrated", open=False, elem_id="controlnet",
                              elem_classes=["controlnet"]):
                photopea = (
                    Photopea()
                    if not shared.opts.data.get("controlnet_disable_photopea_edit", False)
                    else None
                )
                with gr.Row(elem_id=elem_id_tabname + "_accordions", elem_classes="accordions"):
                    for i in range(max_models):
                        with InputAccordion(
                            value=False,
                            label=f"ControlNet Unit {i}",
                            elem_classes=["cnet-unit-enabled-accordion"],  # Class on accordion
                        ):
                            group = ControlNetUiGroup(is_img2img, default_unit, photopea)
                            ui_groups.append(group)
                            controls.append(group.render(f"ControlNet-{i}", elem_id_tabname))

        for i, ui_group in enumerate(ui_groups):
            infotext.register_unit(i, ui_group)
        if shared.opts.data.get("control_net_sync_field_args", True):
            self.infotext_fields = infotext.infotext_fields
            self.paste_field_names = infotext.paste_field_names
        return tuple(controls)

    def get_enabled_units(self, units):
        enabled_units = [x for x in units if x.enabled]
        return enabled_units

    @staticmethod
    def try_crop_image_with_a1111_mask(
            p: StableDiffusionProcessing,
            unit: external_code.ControlNetUnit,
            input_image: np.ndarray,
            resize_mode: external_code.ResizeMode,
            preprocessor
    ) -> np.ndarray:
        a1111_mask_image: Optional[Image.Image] = getattr(p, "image_mask", None)
        is_only_masked_inpaint = (
                issubclass(type(p), StableDiffusionProcessingImg2Img) and
                p.inpaint_full_res and
                a1111_mask_image is not None
        )
        if (
                preprocessor.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab
                and is_only_masked_inpaint
        ):
            logger.info("Crop input image based on A1111 mask.")
            input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
            input_image = [Image.fromarray(x) for x in input_image]

            mask = prepare_mask(a1111_mask_image, p)

            crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
            crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)

            input_image = [
                images.resize_image(resize_mode.int_value(), i, mask.width, mask.height)
                for i in input_image
            ]

            input_image = [x.crop(crop_region) for x in input_image]
            input_image = [
                images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height)
                for x in input_image
            ]

            input_image = [np.asarray(x)[:, :, 0] for x in input_image]
            input_image = np.stack(input_image, axis=2)
        return input_image

    def get_input_data(self, p, unit, preprocessor):
        a1111_i2i_image = getattr(p, "init_images", [None])[0]
        a1111_i2i_mask = getattr(p, "image_mask", None)

        using_a1111_data = False

        resize_mode = external_code.resize_mode_from_value(unit.resize_mode)

        if unit.use_preview_as_input and unit.generated_image is not None:
            image = unit.generated_image
        elif unit.image is None:
            resize_mode = external_code.resize_mode_from_value(p.resize_mode)
            image = HWC3(np.asarray(a1111_i2i_image))
            using_a1111_data = True
        elif (unit.image['image'] < 5).all() and (unit.image['mask'] > 5).any():
            image = unit.image['mask']
        else:
            image = unit.image['image']

        if not isinstance(image, np.ndarray):
            raise ValueError("controlnet is enabled but no input image is given")

        image = HWC3(image)

        if using_a1111_data:
            mask = HWC3(np.asarray(a1111_i2i_mask))
        elif unit.mask_image is not None and (unit.mask_image['image'] > 5).any():
            mask = unit.mask_image['image']
        elif unit.mask_image is not None and (unit.mask_image['mask'] > 5).any():
            mask = unit.mask_image['mask']
        elif unit.image is not None and (unit.image['mask'] > 5).any():
            mask = unit.image['mask']
        else:
            mask = None

        image = self.try_crop_image_with_a1111_mask(p, unit, image, resize_mode, preprocessor)

        if mask is not None:
            mask = cv2.resize(HWC3(mask), (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
            mask = self.try_crop_image_with_a1111_mask(p, unit, mask, resize_mode, preprocessor)

        return image, mask, resize_mode

    @staticmethod
    def get_target_dimensions(p: StableDiffusionProcessing) -> Tuple[int, int, int, int]:
        """Returns (h, w, hr_h, hr_w)."""
        h = align_dim_latent(p.height)
        w = align_dim_latent(p.width)

        high_res_fix = (
                isinstance(p, StableDiffusionProcessingTxt2Img)
                and getattr(p, 'enable_hr', False)
        )
        if high_res_fix:
            if p.hr_resize_x == 0 and p.hr_resize_y == 0:
                hr_y = int(p.height * p.hr_scale)
                hr_x = int(p.width * p.hr_scale)
            else:
                hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
            hr_y = align_dim_latent(hr_y)
            hr_x = align_dim_latent(hr_x)
        else:
            hr_y = h
            hr_x = w

        return h, w, hr_y, hr_x

    @torch.no_grad()
    def process_unit_after_click_generate(self,
                                          p: StableDiffusionProcessing,
                                          unit: external_code.ControlNetUnit,
                                          params: ControlNetCachedParameters,
                                          *args, **kwargs):

        h, w, hr_y, hr_x = self.get_target_dimensions(p)

        has_high_res_fix = (
                isinstance(p, StableDiffusionProcessingTxt2Img)
                and getattr(p, 'enable_hr', False)
        )

        if unit.use_preview_as_input:
            unit.module = 'None'

        preprocessor = global_state.get_preprocessor(unit.module)

        input_image, input_mask, resize_mode = self.get_input_data(p, unit, preprocessor)
        # p.extra_result_images.append(input_image)

        if unit.pixel_perfect:
            unit.processor_res = external_code.pixel_perfect_resolution(
                input_image,
                target_H=h,
                target_W=w,
                resize_mode=resize_mode,
            )

        seed = set_numpy_seed(p)
        logger.debug(f"Use numpy seed {seed}.")
        logger.info(f"Using preprocessor: {unit.module}")
        logger.info(f'preprocessor resolution = {unit.processor_res}')

        preprocessor_output = preprocessor(
            input_image=input_image,
            input_mask=input_mask,
            resolution=unit.processor_res,
            slider_1=unit.threshold_a,
            slider_2=unit.threshold_b,
        )

        preprocessor_output_is_image = judge_image_type(preprocessor_output)

        if preprocessor_output_is_image:
            params.control_cond = crop_and_resize_image(preprocessor_output, resize_mode, h, w)
            p.extra_result_images.append(external_code.visualize_inpaint_mask(params.control_cond))
            params.control_cond = numpy_to_pytorch(params.control_cond).movedim(-1, 1)

            if has_high_res_fix:
                params.control_cond_for_hr_fix = crop_and_resize_image(preprocessor_output, resize_mode, hr_y, hr_x)
                p.extra_result_images.append(external_code.visualize_inpaint_mask(params.control_cond_for_hr_fix))
                params.control_cond_for_hr_fix = numpy_to_pytorch(params.control_cond_for_hr_fix).movedim(-1, 1)
            else:
                params.control_cond_for_hr_fix = params.control_cond
        else:
            params.control_cond = preprocessor_output
            params.control_cond_for_hr_fix = preprocessor_output
            p.extra_result_images.append(input_image)

        if input_mask is not None:
            fill_border = preprocessor.fill_mask_with_one_when_resize_and_fill
            params.control_mask = crop_and_resize_image(input_mask, resize_mode, h, w, fill_border)
            p.extra_result_images.append(params.control_mask)
            params.control_mask = numpy_to_pytorch(params.control_mask).movedim(-1, 1)[:, :1]

            if has_high_res_fix:
                params.control_mask_for_hr_fix = crop_and_resize_image(input_mask, resize_mode, hr_y, hr_x, fill_border)
                p.extra_result_images.append(params.control_mask_for_hr_fix)
                params.control_mask_for_hr_fix = numpy_to_pytorch(params.control_mask_for_hr_fix).movedim(-1, 1)[:, :1]
            else:
                params.control_mask_for_hr_fix = params.control_mask

        if preprocessor.do_not_need_model:
            model_filename = 'Not Needed'
            params.model = ControlModelPatcher()
        else:
            assert unit.model != 'None', 'You have not selected any control model!'
            model_filename = global_state.get_controlnet_filename(unit.model)
            params.model = cached_controlnet_loader(model_filename)
            assert params.model is not None, logger.error(f"Recognizing Control Model failed: {model_filename}")

        params.preprocessor = preprocessor

        params.preprocessor.process_after_running_preprocessors(process=p, params=params, **kwargs)
        params.model.process_after_running_preprocessors(process=p, params=params, **kwargs)

        logger.info(f"Current ControlNet {type(params.model).__name__}: {model_filename}")
        return

    @torch.no_grad()
    def process_unit_before_every_sampling(self,
                                           p: StableDiffusionProcessing,
                                           unit: external_code.ControlNetUnit,
                                           params: ControlNetCachedParameters,
                                           *args, **kwargs):

        is_hr_pass = getattr(p, 'is_hr_pass', False)

        if is_hr_pass:
            cond = params.control_cond_for_hr_fix
            mask = params.control_mask_for_hr_fix
        else:
            cond = params.control_cond
            mask = params.control_mask

        kwargs.update(dict(unit=unit, params=params))

        params.model.strength = float(unit.weight)
        params.model.start_percent = float(unit.guidance_start)
        params.model.end_percent = float(unit.guidance_end)
        params.model.positive_advanced_weighting = None
        params.model.negative_advanced_weighting = None
        params.model.advanced_frame_weighting = None
        params.model.advanced_sigma_weighting = None

        soft_weighting = {
            'input': [0.09941396206337118, 0.12050177219802567, 0.14606275417942507, 0.17704576264172736,
                      0.214600924414215,
                      0.26012233262329093, 0.3152997971191405, 0.3821815722656249, 0.4632503906249999, 0.561515625,
                      0.6806249999999999, 0.825],
            'middle': [1.0],
            'output': [0.09941396206337118, 0.12050177219802567, 0.14606275417942507, 0.17704576264172736,
                       0.214600924414215,
                       0.26012233262329093, 0.3152997971191405, 0.3821815722656249, 0.4632503906249999, 0.561515625,
                       0.6806249999999999, 0.825]
        }

        zero_weighting = {
            'input': [0.0] * 12,
            'middle': [0.0],
            'output': [0.0] * 12
        }

        if unit.control_mode == external_code.ControlMode.CONTROL.value:
            params.model.positive_advanced_weighting = soft_weighting.copy()
            params.model.negative_advanced_weighting = zero_weighting.copy()

        # high-ref fix pass always use softer injections
        if is_hr_pass or unit.control_mode == external_code.ControlMode.PROMPT.value:
            params.model.positive_advanced_weighting = soft_weighting.copy()
            params.model.negative_advanced_weighting = soft_weighting.copy()

        cond, mask = params.preprocessor.process_before_every_sampling(p, cond, mask, *args, **kwargs)

        params.model.advanced_mask_weighting = mask

        params.model.process_before_every_sampling(p, cond, mask, *args, **kwargs)

        logger.info(f"ControlNet Method {params.preprocessor.name} patched.")
        return

    @staticmethod
    def bound_check_params(unit: external_code.ControlNetUnit) -> None:
        """
        Checks and corrects negative parameters in ControlNetUnit 'unit'.
        Parameters 'processor_res', 'threshold_a', 'threshold_b' are reset to
        their default values if negative.

        Args:
            unit (external_code.ControlNetUnit): The ControlNetUnit instance to check.
        """
        preprocessor = global_state.get_preprocessor(unit.module)

        if unit.processor_res < 0:
            unit.processor_res = int(preprocessor.slider_resolution.gradio_update_kwargs.get('value', 512))

        if unit.threshold_a < 0:
            unit.threshold_a = int(preprocessor.slider_1.gradio_update_kwargs.get('value', 1.0))

        if unit.threshold_b < 0:
            unit.threshold_b = int(preprocessor.slider_2.gradio_update_kwargs.get('value', 1.0))

        return

    @torch.no_grad()
    def process_unit_after_every_sampling(self,
                                          p: StableDiffusionProcessing,
                                          unit: external_code.ControlNetUnit,
                                          params: ControlNetCachedParameters,
                                          *args, **kwargs):

        params.preprocessor.process_after_every_sampling(p, params, *args, **kwargs)
        params.model.process_after_every_sampling(p, params, *args, **kwargs)
        return

    @torch.no_grad()
    def process(self, p, *args, **kwargs):
        self.current_params = {}
        enabled_units = self.get_enabled_units(args)
        Infotext.write_infotext(enabled_units, p)
        for i, unit in enumerate(enabled_units):
            self.bound_check_params(unit)
            params = ControlNetCachedParameters()
            self.process_unit_after_click_generate(p, unit, params, *args, **kwargs)
            self.current_params[i] = params
        return

    @torch.no_grad()
    def process_before_every_sampling(self, p, *args, **kwargs):
        for i, unit in enumerate(self.get_enabled_units(args)):
            self.process_unit_before_every_sampling(p, unit, self.current_params[i], *args, **kwargs)
        return

    @torch.no_grad()
    def postprocess_batch_list(self, p, pp, *args, **kwargs):
        for i, unit in enumerate(self.get_enabled_units(args)):
            self.process_unit_after_every_sampling(p, unit, self.current_params[i], pp, *args, **kwargs)
        self.current_params = {}
        return


def on_ui_settings():
    section = ('control_net', "ControlNet")
    shared.opts.add_option("control_net_detectedmap_dir", shared.OptionInfo(
        "detected_maps", "Directory for detected maps auto saving", section=section))
    shared.opts.add_option("control_net_models_path", shared.OptionInfo(
        "", "Extra path to scan for ControlNet models (e.g. training output directory)", section=section))
    shared.opts.add_option("control_net_modules_path", shared.OptionInfo(
        "",
        "Path to directory containing annotator model directories (requires restart, overrides corresponding command line flag)",
        section=section))
    shared.opts.add_option("control_net_unit_count", shared.OptionInfo(
        3, "Multi-ControlNet: ControlNet unit number (requires restart)", gr.Slider,
        {"minimum": 1, "maximum": 10, "step": 1}, section=section))
    shared.opts.add_option("control_net_model_cache_size", shared.OptionInfo(
        5, "Model cache size (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section))
    shared.opts.add_option("control_net_no_detectmap", shared.OptionInfo(
        False, "Do not append detectmap to output", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("control_net_detectmap_autosaving", shared.OptionInfo(
        False, "Allow detectmap auto saving", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("control_net_allow_script_control", shared.OptionInfo(
        False, "Allow other script to control this extension", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("control_net_sync_field_args", shared.OptionInfo(
        True, "Paste ControlNet parameters in infotext", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("controlnet_show_batch_images_in_ui", shared.OptionInfo(
        False, "Show batch images in gradio gallery output", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("controlnet_increment_seed_during_batch", shared.OptionInfo(
        False, "Increment seed after each controlnet batch iteration", gr.Checkbox, {"interactive": True},
        section=section))
    shared.opts.add_option("controlnet_disable_openpose_edit", shared.OptionInfo(
        False, "Disable openpose edit", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("controlnet_disable_photopea_edit", shared.OptionInfo(
        False, "Disable photopea edit", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("controlnet_photopea_warning", shared.OptionInfo(
        True, "Photopea popup warning", gr.Checkbox, {"interactive": True}, section=section))
    shared.opts.add_option("controlnet_input_thumbnail", shared.OptionInfo(
        True, "Input image thumbnail on unit header", gr.Checkbox, {"interactive": True}, section=section))


script_callbacks.on_ui_settings(on_ui_settings)
script_callbacks.on_infotext_pasted(Infotext.on_infotext_pasted)
script_callbacks.on_after_component(ControlNetUiGroup.on_after_component)
script_callbacks.on_before_reload(ControlNetUiGroup.reset)