soiz1's picture
Upload 1460 files
f7e9d9c verified
raw
history blame
9.38 kB
import os
import torch
import base64
import json
import zlib
import numpy as np
import safetensors.torch
from PIL import Image
class EmbeddingEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, torch.Tensor):
return {'TORCHTENSOR': obj.cpu().detach().numpy().tolist()}
return json.JSONEncoder.default(self, obj)
class EmbeddingDecoder(json.JSONDecoder):
def __init__(self, *args, **kwargs):
json.JSONDecoder.__init__(self, *args, object_hook=self.object_hook, **kwargs)
def object_hook(self, d):
if 'TORCHTENSOR' in d:
return torch.from_numpy(np.array(d['TORCHTENSOR']))
return d
def embedding_to_b64(data):
d = json.dumps(data, cls=EmbeddingEncoder)
return base64.b64encode(d.encode())
def embedding_from_b64(data):
d = base64.b64decode(data)
return json.loads(d, cls=EmbeddingDecoder)
def lcg(m=2 ** 32, a=1664525, c=1013904223, seed=0):
while True:
seed = (a * seed + c) % m
yield seed % 255
def xor_block(block):
g = lcg()
randblock = np.array([next(g) for _ in range(np.prod(block.shape))]).astype(np.uint8).reshape(block.shape)
return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F)
def crop_black(img, tol=0):
mask = (img > tol).all(2)
mask0, mask1 = mask.any(0), mask.any(1)
col_start, col_end = mask0.argmax(), mask.shape[1] - mask0[::-1].argmax()
row_start, row_end = mask1.argmax(), mask.shape[0] - mask1[::-1].argmax()
return img[row_start:row_end, col_start:col_end]
def extract_image_data_embed(image):
d = 3
outarr = crop_black(np.array(image.convert('RGB').getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8)) & 0x0F
black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0)
if black_cols[0].shape[0] < 2:
print(f'{os.path.basename(getattr(image, "filename", "unknown image file"))}: no embedded information found.')
return None
data_block_lower = outarr[:, :black_cols[0].min(), :].astype(np.uint8)
data_block_upper = outarr[:, black_cols[0].max() + 1:, :].astype(np.uint8)
data_block_lower = xor_block(data_block_lower)
data_block_upper = xor_block(data_block_upper)
data_block = (data_block_upper << 4) | (data_block_lower)
data_block = data_block.flatten().tobytes()
data = zlib.decompress(data_block)
return json.loads(data, cls=EmbeddingDecoder)
class Embedding:
def __init__(self, vec, name, step=None):
self.vec = vec
self.name = name
self.step = step
self.shape = None
self.vectors = 0
self.sd_checkpoint = None
self.sd_checkpoint_name = None
class DirWithTextualInversionEmbeddings:
def __init__(self, path):
self.path = path
self.mtime = None
def has_changed(self):
if not os.path.isdir(self.path):
return False
mt = os.path.getmtime(self.path)
if self.mtime is None or mt > self.mtime:
return True
def update(self):
if not os.path.isdir(self.path):
return
self.mtime = os.path.getmtime(self.path)
class EmbeddingDatabase:
def __init__(self, tokenizer, expected_shape=-1):
self.ids_lookup = {}
self.word_embeddings = {}
self.embedding_dirs = {}
self.skipped_embeddings = {}
self.expected_shape = expected_shape
self.tokenizer = tokenizer
self.fixes = []
def add_embedding_dir(self, path):
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
def clear_embedding_dirs(self):
self.embedding_dirs.clear()
def register_embedding(self, embedding):
return self.register_embedding_by_name(embedding, embedding.name)
def register_embedding_by_name(self, embedding, name):
ids = self.tokenizer([name], truncation=False, add_special_tokens=False)["input_ids"][0]
first_id = ids[0]
if first_id not in self.ids_lookup:
self.ids_lookup[first_id] = []
if name in self.word_embeddings:
lookup = [x for x in self.ids_lookup[first_id] if x[1].name != name]
else:
lookup = self.ids_lookup[first_id]
if embedding is not None:
lookup += [(ids, embedding)]
self.ids_lookup[first_id] = sorted(lookup, key=lambda x: len(x[0]), reverse=True)
if embedding is None:
if name in self.word_embeddings:
del self.word_embeddings[name]
if len(self.ids_lookup[first_id]) == 0:
del self.ids_lookup[first_id]
return None
self.word_embeddings[name] = embedding
return embedding
def load_from_file(self, path, filename):
name, ext = os.path.splitext(filename)
ext = ext.upper()
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
_, second_ext = os.path.splitext(name)
if second_ext.upper() == '.PREVIEW':
return
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
name = data.get('name', name)
else:
data = extract_image_data_embed(embed_image)
if data:
name = data.get('name', name)
else:
return
elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
elif ext in ['.SAFETENSORS']:
data = safetensors.torch.load_file(path, device="cpu")
else:
return
if data is not None:
embedding = create_embedding_from_data(data, name, filename=filename, filepath=path)
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
self.register_embedding(embedding)
else:
self.skipped_embeddings[name] = embedding
else:
print(f"Unable to load Textual inversion embedding due to data issue: '{name}'.")
def load_from_dir(self, embdir):
if not os.path.isdir(embdir.path):
return
for root, _, fns in os.walk(embdir.path, followlinks=True):
for fn in fns:
try:
fullfn = os.path.join(root, fn)
if os.stat(fullfn).st_size == 0:
continue
self.load_from_file(fullfn, fn)
except Exception:
print(f"Error loading embedding {fn}")
continue
def load_textual_inversion_embeddings(self):
self.ids_lookup.clear()
self.word_embeddings.clear()
self.skipped_embeddings.clear()
for embdir in self.embedding_dirs.values():
self.load_from_dir(embdir)
embdir.update()
return
def find_embedding_at_position(self, tokens, offset):
token = tokens[offset]
possible_matches = self.ids_lookup.get(token, None)
if possible_matches is None:
return None, None
for ids, embedding in possible_matches:
if tokens[offset:offset + len(ids)] == ids:
return embedding, len(ids)
return None, None
def create_embedding_from_data(data, name, filename='unknown embedding file', filepath=None):
if 'string_to_param' in data: # textual inversion embeddings
param_dict = data['string_to_param']
param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1]
vec = emb.detach().to(dtype=torch.float32)
shape = vec.shape[-1]
vectors = vec.shape[0]
elif type(data) == dict and 'clip_g' in data and 'clip_l' in data: # SDXL embedding
vec = {k: v.detach().to(dtype=torch.float32) for k, v in data.items()}
shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1]
vectors = data['clip_g'].shape[0]
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
emb = next(iter(data.values()))
if len(emb.shape) == 1:
emb = emb.unsqueeze(0)
vec = emb.detach().to(dtype=torch.float32)
shape = vec.shape[-1]
vectors = vec.shape[0]
else:
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
embedding = Embedding(vec, name)
embedding.step = data.get('step', None)
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
embedding.vectors = vectors
embedding.shape = shape
if filepath:
embedding.filename = filepath
return embedding