soiz1's picture
Upload 1460 files
f7e9d9c verified
raw
history blame
4.58 kB
import torch
import numpy as np
import os
import time
import random
import string
import cv2
from backend import memory_management
def prepare_free_memory(aggressive=False):
if aggressive:
memory_management.unload_all_models()
print('Cleanup all memory.')
return
memory_management.free_memory(memory_required=memory_management.minimum_inference_memory(),
device=memory_management.get_torch_device())
print('Cleanup minimal inference memory.')
return
def apply_circular_forge(model, tiling_enabled=False):
if model.tiling_enabled == tiling_enabled:
return
print(f'Tiling: {tiling_enabled}')
model.tiling_enabled = tiling_enabled
# def flatten(el):
# flattened = [flatten(children) for children in el.children()]
# res = [el]
# for c in flattened:
# res += c
# return res
#
# layers = flatten(model)
#
# for layer in [layer for layer in layers if 'Conv' in type(layer).__name__]:
# layer.padding_mode = 'circular' if tiling_enabled else 'zeros'
print(f'Tiling is currently under maintenance and unavailable. Sorry for the inconvenience.')
return
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def generate_random_filename(extension=".txt"):
timestamp = time.strftime("%Y%m%d-%H%M%S")
random_string = ''.join(random.choices(string.ascii_lowercase + string.digits, k=5))
filename = f"{timestamp}-{random_string}{extension}"
return filename
@torch.no_grad()
@torch.inference_mode()
def pytorch_to_numpy(x):
return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]
@torch.no_grad()
@torch.inference_mode()
def numpy_to_pytorch(x):
y = x.astype(np.float32) / 255.0
y = y[None]
y = np.ascontiguousarray(y.copy())
y = torch.from_numpy(y).float()
return y
def write_images_to_mp4(frame_list: list, filename=None, fps=6):
from modules.paths_internal import default_output_dir
video_folder = os.path.join(default_output_dir, 'svd')
os.makedirs(video_folder, exist_ok=True)
if filename is None:
filename = generate_random_filename('.mp4')
full_path = os.path.join(video_folder, filename)
try:
import av
except ImportError:
from launch import run_pip
run_pip(
"install imageio[pyav]",
"imageio[pyav]",
)
import av
options = {
"crf": str(23)
}
output = av.open(full_path, "w")
stream = output.add_stream('libx264', fps, options=options)
stream.width = frame_list[0].shape[1]
stream.height = frame_list[0].shape[0]
for img in frame_list:
frame = av.VideoFrame.from_ndarray(img)
packet = stream.encode(frame)
output.mux(packet)
packet = stream.encode(None)
output.mux(packet)
output.close()
return full_path
def pad64(x):
return int(np.ceil(float(x) / 64.0) * 64 - x)
def safer_memory(x):
# Fix many MAC/AMD problems
return np.ascontiguousarray(x.copy()).copy()
def resize_image_with_pad(img, resolution):
H_raw, W_raw, _ = img.shape
k = float(resolution) / float(min(H_raw, W_raw))
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
H_target = int(np.round(float(H_raw) * k))
W_target = int(np.round(float(W_raw) * k))
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
H_pad, W_pad = pad64(H_target), pad64(W_target)
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
def remove_pad(x):
return safer_memory(x[:H_target, :W_target])
return safer_memory(img_padded), remove_pad
def lazy_memory_management(model):
required_memory = memory_management.module_size(model) + memory_management.minimum_inference_memory()
memory_management.free_memory(required_memory, device=memory_management.get_torch_device())
return