Spaces:
Sleeping
Sleeping
streamlit files
Browse files- app.py +80 -0
- requirements.txt +4 -0
- song_dataset.csv +0 -0
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from scipy.sparse import csr_matrix, coo_matrix
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
|
6 |
+
#loading the song_dataset [in cache form to minimize resource usage]
|
7 |
+
@st.cache_data
|
8 |
+
def load_songData(path_to_file):
|
9 |
+
df =pd.read_csv(path_to_file)
|
10 |
+
return df
|
11 |
+
|
12 |
+
#calling load_songData function
|
13 |
+
song_df = load_songData("song_dataset.csv")
|
14 |
+
|
15 |
+
|
16 |
+
# create a series with song IDs as index and titles as values
|
17 |
+
song_titles_series = song_df.drop_duplicates(subset=["song"]).set_index("song")["title"]
|
18 |
+
|
19 |
+
# sparse item-item similarity: transpose sparse matrix because we want item-item similarity (songs as rows)
|
20 |
+
interaction_matrix = song_df.pivot_table(index="user", columns="song", values="play_count", fill_value=0)
|
21 |
+
sparse_matrix = csr_matrix(interaction_matrix)
|
22 |
+
|
23 |
+
item_similarity_sparse = cosine_similarity(sparse_matrix.T, dense_output=False)
|
24 |
+
coo = coo_matrix(item_similarity_sparse)
|
25 |
+
|
26 |
+
item_similarity_df = pd.DataFrame({
|
27 |
+
"item_1": interaction_matrix.columns[coo.row],
|
28 |
+
"item_2": interaction_matrix.columns[coo.col],
|
29 |
+
"similarity": coo.data,
|
30 |
+
})
|
31 |
+
|
32 |
+
#for song-based recommendation engine call
|
33 |
+
|
34 |
+
def recommend_similar_items_sparse(selected_songs, top_n):
|
35 |
+
scores = {}
|
36 |
+
for song in selected_songs:
|
37 |
+
# getting all rows where item_1 is the selected song
|
38 |
+
similar_items = item_similarity_df[item_similarity_df["item_1"] == song]
|
39 |
+
|
40 |
+
for _, row in similar_items.iterrows():
|
41 |
+
similar_song = row["item_2"]
|
42 |
+
similarity = row["similarity"]
|
43 |
+
#filtering out songs already listened to by user
|
44 |
+
if similar_song not in selected_songs:
|
45 |
+
scores[similar_song] = scores.get(similar_song, 0) + similarity
|
46 |
+
|
47 |
+
recommended_songs = sorted(scores.items(), key=lambda x: x[1], reverse=True)[:top_n]
|
48 |
+
return [song for song, score in recommended_songs]
|
49 |
+
|
50 |
+
|
51 |
+
# Streamlit Interface
|
52 |
+
st.title("Song Recommendation Engine[Proj_charlie]")
|
53 |
+
st.write("**Please select as many songs as you've listened to.**")
|
54 |
+
|
55 |
+
# Geting User inputs
|
56 |
+
all_songs = song_titles_series.index.tolist()
|
57 |
+
selected_songs = st.multiselect(
|
58 |
+
"Select Song(s):", options=all_songs, format_func=lambda x: song_titles_series[x],
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
# Recommendation Magic
|
63 |
+
|
64 |
+
if st.button("Get Recommendations"):
|
65 |
+
if not selected_songs:
|
66 |
+
st.warning("Please select song(s) you have listened to!")
|
67 |
+
else:
|
68 |
+
recommendations = recommend_similar_items_sparse(selected_songs, top_n=10)
|
69 |
+
if recommendations:
|
70 |
+
# displaying selected songs:
|
71 |
+
st.subheader("Great! You selected:")
|
72 |
+
for idx, song in enumerate(selected_songs, start=1):
|
73 |
+
st.write(f"{idx}. {song_titles_series.get(song, song)}")
|
74 |
+
|
75 |
+
# displaying recommended songs
|
76 |
+
st.subheader("Top Recommended songs:")
|
77 |
+
for idx, song in enumerate(recommendations, start=1):
|
78 |
+
st.write(f"{idx}. {song_titles_series.get(song, song)}")
|
79 |
+
else:
|
80 |
+
st.info("Oops! No recommendations available for selected songs.")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.2.3
|
2 |
+
scikit_learn==1.5.2
|
3 |
+
scipy==1.14.1
|
4 |
+
streamlit==1.40.1
|
song_dataset.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|