import streamlit as st import pandas as pd from scipy.sparse import csr_matrix, coo_matrix from sklearn.metrics.pairwise import cosine_similarity # loading the song_dataset [in cache form to minimize resource usage] @st.cache_data def load_songData(path_to_file): df = pd.read_csv(path_to_file) return df # calling load_songData function song_df = load_songData("song_dataset.csv") # load all user IDs all_users = song_df["user"].unique() # create a series with song IDs as index and titles as values song_titles_series = song_df.drop_duplicates(subset=["song"]).set_index("song")["title"] # sparse item-item similarity: transpose sparse matrix because we want item-item similarity (songs as rows) interaction_matrix = song_df.pivot_table( index="user", columns="song", values="play_count", fill_value=0 ) sparse_matrix = csr_matrix(interaction_matrix) item_similarity_sparse = cosine_similarity(sparse_matrix.T, dense_output=False) coo = coo_matrix(item_similarity_sparse) item_similarity_df = pd.DataFrame( { "item_1": interaction_matrix.columns[coo.row], "item_2": interaction_matrix.columns[coo.col], "similarity": coo.data, } ) # for song-based recommendation engine call def recommend_similar_items_sparse(selected_songs, top_n): scores = {} for song in selected_songs: # getting all rows where item_1 is the selected song similar_items = item_similarity_df[item_similarity_df["item_1"] == song] for _, row in similar_items.iterrows(): similar_song = row["item_2"] similarity = row["similarity"] # filtering out songs already listened to by user if similar_song not in selected_songs: scores[similar_song] = scores.get(similar_song, 0) + similarity recommended_songs = sorted(scores.items(), key=lambda x: x[1], reverse=True)[ :top_n ] return [song for song, score in recommended_songs] # Streamlit Interface st.subheader("Song Recommendation Engine[Proj_charlie]") # Geting User inputs st.write("**Please select a user.**") selected_user_id = st.selectbox("Select a User ID:", options=all_users) st.write("**Please select as many songs as user has listened to.**") all_songs = song_titles_series.index.tolist() selected_songs = st.multiselect( "Select Song(s):", options=all_songs, format_func=lambda x: song_titles_series[x], ) # Recommendation Magic if st.button("Get Recommendations"): if not selected_songs: st.warning("Please select song(s) you have listened to!") else: recommendations = recommend_similar_items_sparse(selected_songs, top_n=10) if recommendations: # displaying selected songs: st.subheader(f"Great! {selected_user_id} has listened to:") for idx, song in enumerate(selected_songs, start=1): st.write(f"{idx}. {song_titles_series.get(song, song)}") # displaying recommended songs st.subheader(f"Top Recommended songs for {selected_user_id}:") for idx, song in enumerate(recommendations, start=1): st.write(f"{idx}. {song_titles_series.get(song, song)}") else: st.info("Oops! No recommendations available for selected songs.")