Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
#def classify_sentiment(audio, model): | |
#pipe = pipeline("audio-classification", model=model) | |
#sentiment_classifier = pipe(audio) | |
#return sentiment_classifier | |
def classify_sentiment(audio, model): | |
pipe = pipeline("audio-classification", model=model) | |
sentiment_classifier = pipe(audio) | |
preds_dict={} | |
for sentiment_classifier in preds[0]: | |
preds_dict[pred['label']] = pred['score'] | |
return preds_dict | |
input_audio = [gr.inputs.Audio(source="microphone", type="filepath", label="Record/ Drop audio"), gr.inputs.Dropdown(["DrishtiSharma/wav2vec2-base-finetuned-sentiment-mesd-v11", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"], label="Model Name")] | |
label = gr.outputs.Label(num_top_classes=5) | |
gr.Interface( | |
fn = classify_sentiment, | |
inputs = input_audio, | |
outputs = label, | |
#examples=[["test1.wav", "DrishtiSharma/wav2vec2-base-finetuned-sentiment-mesd-v11"], ["test2.wav", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"]], | |
theme="grass").launch() | |