DrishtiSharma commited on
Commit
fa3b519
·
1 Parent(s): 644e4ef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -2,15 +2,15 @@
2
  import gradio as gr
3
  from transformers import pipeline
4
 
5
- #Model_1 = "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD"
6
- #Model_2 ="hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"
7
 
8
  def classify_sentiment(audio):
9
  pipe = pipeline("audio-classification", model="hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD")
10
  pred = pipe(audio)
11
  return {dic["label"]: dic["score"] for dic in pred}
12
 
13
- input_audio = [gr.inputs.Audio(source="microphone", type="filepath", label="Record/ Drop audio"), #gr.inputs.Dropdown([Model_1, Model_2], label="Model Name")]
14
  label = gr.outputs.Label(num_top_classes=5)
15
 
16
  ################### Gradio Web APP ################################
@@ -36,6 +36,6 @@ gr.Interface(
36
  fn = classify_sentiment,
37
  inputs = input_audio,
38
  outputs = label,
39
- examples=[["basta_neutral.wav"], ["detras_disgust.wav"], ["mortal_sadness.wav"], ["respiracion_happiness.wav"], ["robo_fear.wav"]],
40
  theme="grass").launch()
41
 
 
2
  import gradio as gr
3
  from transformers import pipeline
4
 
5
+ Model_1 = "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD"
6
+ Model_2 ="hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"
7
 
8
  def classify_sentiment(audio):
9
  pipe = pipeline("audio-classification", model="hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD")
10
  pred = pipe(audio)
11
  return {dic["label"]: dic["score"] for dic in pred}
12
 
13
+ input_audio = [gr.inputs.Audio(source="microphone", type="filepath", label="Record/ Drop audio"), gr.inputs.Dropdown([Model_1, Model_2], label="Model Name")]
14
  label = gr.outputs.Label(num_top_classes=5)
15
 
16
  ################### Gradio Web APP ################################
 
36
  fn = classify_sentiment,
37
  inputs = input_audio,
38
  outputs = label,
39
+ examples=[["basta_neutral.wav", Model_1], ["detras_disgust.wav", Model_1], ["mortal_sadness.wav", Model_1], ["respiracion_happiness.wav", Modle_1], ["robo_fear.wav", Model_1]],
40
  theme="grass").launch()
41