Change gen output
Browse files
app.py
CHANGED
@@ -16,6 +16,7 @@ tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
|
|
16 |
# Load the Lora model
|
17 |
model = PeftModel.from_pretrained(model, peft_model_id)
|
18 |
|
|
|
19 |
|
20 |
def gen_entities(text):
|
21 |
text = f"<SP> text: {text}\n\n entities: "
|
@@ -23,7 +24,8 @@ def gen_entities(text):
|
|
23 |
with torch.cuda.amp.autocast():
|
24 |
output_tokens = model.generate(**batch, max_new_tokens=256, eos_token_id=50258)
|
25 |
|
26 |
-
return tokenizer.decode(output_tokens
|
|
|
27 |
|
28 |
|
29 |
iface = gr.Interface(fn=gen_entities, inputs="text", outputs="text")
|
|
|
16 |
# Load the Lora model
|
17 |
model = PeftModel.from_pretrained(model, peft_model_id)
|
18 |
|
19 |
+
model.eval()
|
20 |
|
21 |
def gen_entities(text):
|
22 |
text = f"<SP> text: {text}\n\n entities: "
|
|
|
24 |
with torch.cuda.amp.autocast():
|
25 |
output_tokens = model.generate(**batch, max_new_tokens=256, eos_token_id=50258)
|
26 |
|
27 |
+
# return tokenizer.decode(output_tokens, skip_special_tokens=False)
|
28 |
+
return tokenizer.batch_decode(output_tokens.detach().cpu().numpy(), skip_special_tokens=True)
|
29 |
|
30 |
|
31 |
iface = gr.Interface(fn=gen_entities, inputs="text", outputs="text")
|