File size: 1,978 Bytes
428a5aa
 
5537833
 
 
 
 
 
 
 
428a5aa
92bb964
 
5537833
92bb964
 
428a5aa
 
 
5537833
428a5aa
5537833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import requests
from bs4 import BeautifulSoup
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig


generation_config = GenerationConfig(temperature=.8,
                                     top_p=0.75,
                                     top_k=40)


def extract_text(url: str):
    print(['extract_text', 'start'])
    if url is None or url.strip() == '':
        return ''
    response = requests.get(url)
    soup = BeautifulSoup(response.text, "html.parser")
    text = '\n\n'.join(map(lambda p: p.text, soup.find_all('p')))
    print(['extract_text', 'end'])
    return text


def summarize_text(text: str):
    print(['summarize_text', 'start'])
    input_text = f'<s>Instruction: Elabora un resume del siguiente texto.\nInput: {text}\nOutput: '
    batch = tokenizer(input_text, return_tensors='pt')
    print(['summarize_text', 'generating'])
    with torch.cuda.amp.autocast():
        output_tokens = model.generate(**batch, 
                                    max_new_tokens=256, 
                                    generation_config=generation_config
                                    )
    output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
    print(['summarize_text', 'end'])
    return output


def load_model(peft_model_id):
    print(['load_model', 'start'])
    config = PeftConfig.from_pretrained(peft_model_id)
    print(['load_model', 'loading model'])
    model = AutoModelForCausalLM.from_pretrained(
        config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
    print(['load_model', 'loading tokenizer'])
    tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
    model = PeftModel.from_pretrained(model, peft_model_id)
    model.config.use_cache = True
    print(['load_model', 'end'])
    return model, tokenizer


model, tokenizer = load_model("milyiyo/opt-6.7b-lora-sag-t3000-v300-v2")