learning-assistance / functions.py
Alberto Carmona
Setn env var for cuda
47d82ab
raw
history blame
2.06 kB
import os
import requests
import torch
from bs4 import BeautifulSoup
from peft import PeftConfig, PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
generation_config = GenerationConfig(temperature=.8,
top_p=0.75,
top_k=40)
def extract_text(url: str):
print(['extract_text', 'start'])
if url is None or url.strip() == '':
return ''
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
text = '\n\n'.join(map(lambda p: p.text, soup.find_all('p')))
print(['extract_text', 'end'])
return text
def summarize_text(text: str):
print(['summarize_text', 'start'])
input_text = f'<s>Instruction: Elabora un resume del siguiente texto.\nInput: {text}\nOutput: '
batch = tokenizer(input_text, return_tensors='pt')
print(['summarize_text', 'generating'])
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch,
max_new_tokens=256,
generation_config=generation_config
)
output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
print(['summarize_text', 'end'])
return output
def load_model(peft_model_id):
print(['load_model', 'start'])
config = PeftConfig.from_pretrained(peft_model_id)
print(['load_model', 'loading model'])
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
print(['load_model', 'loading tokenizer'])
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, peft_model_id)
model.config.use_cache = True
print(['load_model', 'end'])
return model, tokenizer
model, tokenizer = load_model(
"hackathon-somos-nlp-2023/opt-6.7b-lora-sag-t3000-v300-v2")