Spaces:
Runtime error
Runtime error
import os | |
import requests | |
import torch | |
from bs4 import BeautifulSoup | |
from peft import PeftConfig, PeftModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig | |
# os.environ["CUDA_VISIBLE_DEVICES"] = "0" | |
generation_config = GenerationConfig(temperature=.8, | |
top_p=0.75, | |
top_k=40) | |
def extract_text(url: str): | |
print(['extract_text', 'start']) | |
if url is None or url.strip() == '': | |
return '' | |
response = requests.get(url) | |
soup = BeautifulSoup(response.text, "html.parser") | |
text = '\n\n'.join(map(lambda p: p.text, soup.find_all('p'))) | |
print(['extract_text', 'end']) | |
return text | |
def summarize_text(text: str): | |
print(['summarize_text', 'start']) | |
input_text = f'<s>Instruction: Elabora un resume del siguiente texto.\nInput: {text}\nOutput: ' | |
batch = tokenizer(input_text, return_tensors='pt') | |
batch = batch.to('cuda') | |
print(['summarize_text', 'generating']) | |
with torch.cuda.amp.autocast(): | |
output_tokens = model.generate(**batch, | |
max_new_tokens=512, | |
generation_config=generation_config | |
) | |
output = tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
output = output.replace(input_text, '') | |
print(['summarize_text', 'end']) | |
return output | |
def generate_question(text:str): | |
return 'Pregunta de ejemplo.' | |
def get_answer_context(): | |
return 'Aquí está la respuesta.' | |
def answer_question(question:str): | |
return 'Esta es la respuesta a su pregunta.' | |
def load_model(peft_model_id): | |
print(['load_model', 'start']) | |
config = PeftConfig.from_pretrained(peft_model_id) | |
print(['load_model', 'loading model']) | |
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, | |
return_dict=True, | |
load_in_8bit=True, | |
device_map='auto') | |
print(['load_model', 'loading tokenizer']) | |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
model = PeftModel.from_pretrained(model, peft_model_id) | |
model.config.use_cache = True | |
print(['load_model', 'end']) | |
return model, tokenizer | |
model, tokenizer = load_model( | |
"hackathon-somos-nlp-2023/opt-6.7b-lora-sag-t3000-v300-v2") | |