Spaces:
Runtime error
Runtime error
Add the documentation to some functions
Browse files- functions.py +79 -3
functions.py
CHANGED
@@ -30,6 +30,16 @@ text_splitter = CharacterTextSplitter()
|
|
30 |
|
31 |
|
32 |
def get_nearest_examples(question: str, k: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
print(['get_nearest_examples', 'start'])
|
34 |
question_embedding = get_embeddings([question]).cpu().detach().numpy()
|
35 |
embeddings_dataset = shared['embeddings_dataset']
|
@@ -56,6 +66,15 @@ def get_embeddings(text):
|
|
56 |
|
57 |
|
58 |
def build_faiss_index(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
print(['build_faiss_index', 'start'])
|
60 |
text_list = split_text(text)
|
61 |
emb_list = []
|
@@ -71,6 +90,15 @@ def build_faiss_index(text):
|
|
71 |
|
72 |
|
73 |
def extract_text(url: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
print(['extract_text', 'start'])
|
75 |
if url is None or url.strip() == '':
|
76 |
return ''
|
@@ -83,20 +111,50 @@ def extract_text(url: str):
|
|
83 |
|
84 |
|
85 |
def split_text(text: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
lines = text.split('\n')
|
87 |
lines = [line.strip() for line in lines if line.strip()]
|
88 |
return lines
|
89 |
|
90 |
|
91 |
def remove_prompt(text: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
output_prompt = 'Output: '
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
96 |
return res
|
97 |
|
98 |
|
99 |
def summarize_text(text: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
print(['summarize_text', 'start'])
|
101 |
|
102 |
print(['summarize_text', 'splitting text'])
|
@@ -132,6 +190,15 @@ def summarize_text_v1(text: str):
|
|
132 |
|
133 |
|
134 |
def generate_question(text: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
print(['generate_question', 'start'])
|
136 |
# Get a random section of the whole text to generate a question
|
137 |
fragments = split_text(text)
|
@@ -156,6 +223,15 @@ def get_answer_context():
|
|
156 |
|
157 |
|
158 |
def answer_question(question: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
print(['answer_question', 'start'])
|
160 |
full_text = shared['full_text']
|
161 |
|
|
|
30 |
|
31 |
|
32 |
def get_nearest_examples(question: str, k: int):
|
33 |
+
"""
|
34 |
+
Returns the k nearest examples to a given question.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
question (str): The input question to find nearest examples for.
|
38 |
+
k (int): The number of nearest examples to retrieve.
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
The k nearest examples to the given question.
|
42 |
+
"""
|
43 |
print(['get_nearest_examples', 'start'])
|
44 |
question_embedding = get_embeddings([question]).cpu().detach().numpy()
|
45 |
embeddings_dataset = shared['embeddings_dataset']
|
|
|
66 |
|
67 |
|
68 |
def build_faiss_index(text):
|
69 |
+
"""
|
70 |
+
Builds a FAISS index for the given text.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
text (str): The input text to build a FAISS index for.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
None.
|
77 |
+
"""
|
78 |
print(['build_faiss_index', 'start'])
|
79 |
text_list = split_text(text)
|
80 |
emb_list = []
|
|
|
90 |
|
91 |
|
92 |
def extract_text(url: str):
|
93 |
+
"""
|
94 |
+
Extracts the text content from a given URL and returns it as a string.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
url (str): The URL to extract text content from.
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
str: The text content extracted from the URL, or an empty string if the URL is invalid.
|
101 |
+
"""
|
102 |
print(['extract_text', 'start'])
|
103 |
if url is None or url.strip() == '':
|
104 |
return ''
|
|
|
111 |
|
112 |
|
113 |
def split_text(text: str):
|
114 |
+
"""
|
115 |
+
Splits a given text into a list of individual lines.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
text (str): The input text to split into lines.
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
List[str]: A list of individual lines in the input text.
|
122 |
+
"""
|
123 |
lines = text.split('\n')
|
124 |
lines = [line.strip() for line in lines if line.strip()]
|
125 |
return lines
|
126 |
|
127 |
|
128 |
def remove_prompt(text: str) -> str:
|
129 |
+
"""
|
130 |
+
Removes the prompt from a given text and returns the resulting text.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
text (str): The input text to remove the prompt from.
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
str: The input text with the prompt removed, or the original text if the prompt is not found.
|
137 |
+
"""
|
138 |
output_prompt = 'Output: '
|
139 |
+
try:
|
140 |
+
idx = text.index(output_prompt)
|
141 |
+
res = text[idx + len(output_prompt):].strip()
|
142 |
+
res = res.replace('Input: ', '')
|
143 |
+
except ValueError:
|
144 |
+
res = text
|
145 |
return res
|
146 |
|
147 |
|
148 |
def summarize_text(text: str) -> str:
|
149 |
+
"""
|
150 |
+
Generates a summary of the given text using a pre-trained language model.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
text (str): The input text to generate a summary for.
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
str: The generated summary for the input text.
|
157 |
+
"""
|
158 |
print(['summarize_text', 'start'])
|
159 |
|
160 |
print(['summarize_text', 'splitting text'])
|
|
|
190 |
|
191 |
|
192 |
def generate_question(text: str):
|
193 |
+
"""
|
194 |
+
Generates a question based on a random section of the input text using a pre-trained language model.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
text (str): The input text to generate a question for.
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
str: The generated question for the input text.
|
201 |
+
"""
|
202 |
print(['generate_question', 'start'])
|
203 |
# Get a random section of the whole text to generate a question
|
204 |
fragments = split_text(text)
|
|
|
223 |
|
224 |
|
225 |
def answer_question(question: str):
|
226 |
+
"""
|
227 |
+
Generates an answer to the given question based on a pre-trained language model and a pre-built Faiss index.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
question (str): The question to generate an answer for.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
str: The generated answer for the question.
|
234 |
+
"""
|
235 |
print(['answer_question', 'start'])
|
236 |
full_text = shared['full_text']
|
237 |
|