File size: 5,315 Bytes
4f53cb7
25d0dfd
 
 
4f53cb7
 
 
 
 
 
3fb0314
58cf8e5
 
3720052
1dc8523
58cf8e5
 
4f53cb7
 
 
 
 
 
 
 
 
 
 
 
 
 
3fb0314
844f39e
 
4f53cb7
a9e602c
addada5
 
3fb0314
 
418d2a3
3fb0314
4f53cb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dc8523
 
addada5
1dc8523
 
 
 
4f53cb7
1b1fde8
140d623
4f53cb7
 
 
 
 
 
 
 
 
140d623
4f53cb7
 
1dc8523
4f53cb7
addada5
 
 
 
 
140d623
bb02454
140d623
4f53cb7
 
1b1fde8
4f53cb7
 
 
 
 
3720052
1dc8523
4f53cb7
 
3720052
1dc8523
 
140d623
4f53cb7
 
20ec549
4f53cb7
 
140d623
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# !python -c "import torch; assert torch.cuda.get_device_capability()[0] >= 8, 'Hardware not supported for Flash Attention'"
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer,  StoppingCriteria, StoppingCriteriaList, GenerationConfig
import os

#sft_model = "somosnlp/gemma-FULL-RAC-Colombia_v2"
#sft_model = "somosnlp/RecetasDeLaAbuela_mistral-7b-instruct-v0.2-bnb-4bit"
#base_model_name = "unsloth/Mistral-7B-Instruct-v0.2"
sft_model1 = "somosnlp/RecetasDeLaAbuela_gemma-2b-it-bnb-4bit"
sft_model2 = "somosnlp/RecetasDeLaAbuela_mistral-7b-instruct-v0.2-bnb-4bit"
base_model_name = "unsloth/gemma-2b-it-bnb-4bit"

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)
max_seq_length=400

# if torch.cuda.get_device_capability()[0] >= 8:
#     # print("Flash Attention")
#     attn_implementation="flash_attention_2"
# else:
#     attn_implementation=None
attn_implementation=None

#base_model = AutoModelForCausalLM.from_pretrained(model_name,return_dict=True,torch_dtype=torch.float16,)
base_model = AutoModelForCausalLM.from_pretrained(base_model_name,return_dict=True,device_map="auto", torch_dtype=torch.float16,)
#base_model = AutoModelForCausalLM.from_pretrained(base_model_name, return_dict=True, device_map = {"":0}, attn_implementation = attn_implementation,).eval()

tokenizer = AutoTokenizer.from_pretrained(base_model_name, max_length = max_seq_length)
sft_model = sft_model1
ft_model = PeftModel.from_pretrained(base_model, sft_model)
model = ft_model.merge_and_unload()
model.save_pretrained(".")
#model.to('cuda')
tokenizer.save_pretrained(".")

class ListOfTokensStoppingCriteria(StoppingCriteria):
    """
    Clase para definir un criterio de parada basado en una lista de tokens específicos.
    """
    def __init__(self, tokenizer, stop_tokens):
        self.tokenizer = tokenizer
        # Codifica cada token de parada y guarda sus IDs en una lista
        self.stop_token_ids_list = [tokenizer.encode(stop_token, add_special_tokens=False) for stop_token in stop_tokens]

    def __call__(self, input_ids, scores, **kwargs):
        # Verifica si los últimos tokens generados coinciden con alguno de los conjuntos de tokens de parada
        for stop_token_ids in self.stop_token_ids_list:
            len_stop_tokens = len(stop_token_ids)
            if len(input_ids[0]) >= len_stop_tokens:
                if input_ids[0, -len_stop_tokens:].tolist() == stop_token_ids:
                    return True
        return False

# Uso del criterio de parada personalizado
stop_tokens = ["<end_of_turn>"]  # Lista de tokens de parada

# Inicializa tu criterio de parada con el tokenizer y la lista de tokens de parada
stopping_criteria = ListOfTokensStoppingCriteria(tokenizer, stop_tokens)

# Añade tu criterio de parada a una StoppingCriteriaList
stopping_criteria_list = StoppingCriteriaList([stopping_criteria])

def generate_text(modelin, prompt, context, max_length=2100):
  print('Modelo es: '+modelin)
  if (modelin != sft_model):
      sft_model = modelin
      ft_model = PeftModel.from_pretrained(base_model, sft_model)
      model = ft_model.merge_and_unload()

  prompt=prompt.replace("\n", "").replace("¿","").replace("?","")
  input_text = f'''<bos><start_of_turn>system ¿{context}?<end_of_turn><start_of_turn>user ¿{prompt}?<end_of_turn><start_of_turn>model'''
  inputs = tokenizer.encode(input_text, return_tensors="pt", add_special_tokens=False).to("cuda:0")
  max_new_tokens=max_length
  generation_config = GenerationConfig(
                max_new_tokens=max_new_tokens,
                temperature=0.32,
                #top_p=0.9,
                top_k=50, # 45
                repetition_penalty=1.04,  #1.1
                do_sample=True,
            )
  outputs = model.generate(generation_config=generation_config, input_ids=inputs, stopping_criteria=stopping_criteria_list,)
  return tokenizer.decode(outputs[0], skip_special_tokens=False) #True

def mostrar_respuesta(modelo, pregunta, contexto):
    try:
      print('Modelo: '+str(modelo))
      print('Pregunta: '+str(pregunta))
      print('Contexto: '+str(contexto))
      res= generate_text(modelo, pregunta, contexto, max_length=500)    
      print('Respuesta: '+str(contexto))
      return str(res)
    except Exception as e:
      return str(e)

# Ejemplos de preguntas
mis_ejemplos = [
    ["¿Dime la receta de la tortilla de patatatas?"],
    ["¿Dime la receta del ceviche?"],
    ["¿Como se cocinan unos autenticos frijoles?"],
]

lista_modelos = [sft_model1, sft_model2]

iface = gr.Interface(
    fn=mostrar_respuesta,
    inputs=[gr.Dropdown(choices=lista_modelos, value = sft_model1, label="Modelo", type="value"),
        gr.Textbox(label="Pregunta"), 
        gr.Textbox(label="Contexto", value="You are a helpful AI assistant. Eres un experto cocinero hispanoamericano."),],
    outputs=[gr.Textbox(label="Respuesta", lines=2),],
    title="Recetas de la Abuel@",
    description="Introduce tu pregunta sobre recetas de cocina.",
    examples=mis_ejemplos,
)

iface.queue(max_size=14).launch() # share=True,debug=True