Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,9 +10,10 @@ import os
|
|
10 |
#base_model_name = "unsloth/Mistral-7B-Instruct-v0.2"
|
11 |
#sft_model = "somosnlp/RecetasDeLaAbuela_gemma-2b-it-bnb-4bit"
|
12 |
sft_model = "somosnlp/RecetasDeLaAbuela5k_gemma-2b-bnb-4bit"
|
13 |
-
base_model_name = "unsloth/gemma-2b-it-bnb-4bit"
|
|
|
14 |
|
15 |
-
max_seq_length=
|
16 |
base_model = AutoModelForCausalLM.from_pretrained(base_model_name,return_dict=True,device_map="auto", torch_dtype=torch.float16,)
|
17 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, max_length = max_seq_length)
|
18 |
ft_model = PeftModel.from_pretrained(base_model, sft_model)
|
@@ -54,10 +55,8 @@ def generate_text(prompt, context, max_length=max_seq_length):
|
|
54 |
max_new_tokens=max_length
|
55 |
generation_config = GenerationConfig(
|
56 |
max_new_tokens=max_new_tokens,
|
57 |
-
temperature=0.32,
|
58 |
-
|
59 |
-
top_k=50, # 45
|
60 |
-
repetition_penalty=1.04, #1.1
|
61 |
do_sample=True,
|
62 |
)
|
63 |
outputs = model.generate(generation_config=generation_config, input_ids=inputs, stopping_criteria=stopping_criteria_list,)
|
@@ -72,14 +71,14 @@ def mostrar_respuesta(pregunta, contexto):
|
|
72 |
|
73 |
# Ejemplos de preguntas
|
74 |
mis_ejemplos = [
|
75 |
-
["
|
76 |
-
["
|
77 |
-
["
|
78 |
]
|
79 |
|
80 |
iface = gr.Interface(
|
81 |
fn=mostrar_respuesta,
|
82 |
-
inputs=[gr.Textbox(label="Pregunta"), gr.Textbox(label="Contexto", value="Eres un experto
|
83 |
outputs=[gr.Textbox(label="Respuesta", lines=2),],
|
84 |
title="Recetas de la Abuel@",
|
85 |
description="Introduce tu pregunta sobre recetas de cocina.",
|
|
|
10 |
#base_model_name = "unsloth/Mistral-7B-Instruct-v0.2"
|
11 |
#sft_model = "somosnlp/RecetasDeLaAbuela_gemma-2b-it-bnb-4bit"
|
12 |
sft_model = "somosnlp/RecetasDeLaAbuela5k_gemma-2b-bnb-4bit"
|
13 |
+
#base_model_name = "unsloth/gemma-2b-it-bnb-4bit"
|
14 |
+
base_model_name = "unsloth/gemma-2b-bnb-4bit"
|
15 |
|
16 |
+
max_seq_length=700
|
17 |
base_model = AutoModelForCausalLM.from_pretrained(base_model_name,return_dict=True,device_map="auto", torch_dtype=torch.float16,)
|
18 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, max_length = max_seq_length)
|
19 |
ft_model = PeftModel.from_pretrained(base_model, sft_model)
|
|
|
55 |
max_new_tokens=max_length
|
56 |
generation_config = GenerationConfig(
|
57 |
max_new_tokens=max_new_tokens,
|
58 |
+
temperature=0.32, #top_p=0.9,top_k=50, # 45
|
59 |
+
repetition_penalty=1.3, #1.1
|
|
|
|
|
60 |
do_sample=True,
|
61 |
)
|
62 |
outputs = model.generate(generation_config=generation_config, input_ids=inputs, stopping_criteria=stopping_criteria_list,)
|
|
|
71 |
|
72 |
# Ejemplos de preguntas
|
73 |
mis_ejemplos = [
|
74 |
+
["Ingredientes y pasos de la receta asado de cordero", "Cocinero español"],
|
75 |
+
["Ingredientes y pasos de la receta ceviche", "Cocinero peruano"],
|
76 |
+
["Ingredientes y pasos de la receta frijoles?", "Cocinero de México"],
|
77 |
]
|
78 |
|
79 |
iface = gr.Interface(
|
80 |
fn=mostrar_respuesta,
|
81 |
+
inputs=[gr.Textbox(label="Pregunta"), gr.Textbox(label="Contexto", value="Eres un agente experto en nutrición y cocina."),],
|
82 |
outputs=[gr.Textbox(label="Respuesta", lines=2),],
|
83 |
title="Recetas de la Abuel@",
|
84 |
description="Introduce tu pregunta sobre recetas de cocina.",
|