Spaces:
Runtime error
Runtime error
Update app.py
Browse filesAdd button for different parts of training model process
app.py
CHANGED
@@ -1,3 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
#def greet(name):
|
@@ -6,15 +19,76 @@ import gradio as gr
|
|
6 |
#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
#iface.launch()
|
8 |
|
9 |
-
def
|
10 |
return f"Welcome to Gradio, {name}!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
with gr.Blocks() as demo:
|
13 |
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
14 |
with gr.Row():
|
15 |
inp = gr.Textbox(placeholder="What is your name?")
|
16 |
out = gr.Textbox()
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
demo.launch()
|
|
|
1 |
+
import argparse
|
2 |
+
import itertools
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Optional
|
7 |
+
import subprocess
|
8 |
+
import sys
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from spanish_medica_llm import run_training
|
13 |
+
|
14 |
import gradio as gr
|
15 |
|
16 |
#def greet(name):
|
|
|
19 |
#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
20 |
#iface.launch()
|
21 |
|
22 |
+
def generate_model(name):
|
23 |
return f"Welcome to Gradio, {name}!"
|
24 |
+
|
25 |
+
def generate(prompt):
|
26 |
+
from diffusers import StableDiffusionPipeline
|
27 |
+
|
28 |
+
pipe = StableDiffusionPipeline.from_pretrained("./output_model", torch_dtype=torch.float16)
|
29 |
+
pipe = pipe.to("cuda")
|
30 |
+
image = pipe(prompt).images[0]
|
31 |
+
return(image)
|
32 |
+
|
33 |
+
def evaluate_model():
|
34 |
+
#from diffusers import StableDiffusionPipeline
|
35 |
+
|
36 |
+
#pipe = StableDiffusionPipeline.from_pretrained("./output_model", torch_dtype=torch.float16)
|
37 |
+
#pipe = pipe.to("cuda")
|
38 |
+
#image = pipe(prompt).images[0]
|
39 |
+
return("Evaluate Model")
|
40 |
+
|
41 |
+
def train_model(*inputs):
|
42 |
+
if "IS_SHARED_UI" in os.environ:
|
43 |
+
raise gr.Error("This Space only works in duplicated instances")
|
44 |
+
|
45 |
+
args_general = argparse.Namespace(
|
46 |
+
image_captions_filename = True,
|
47 |
+
train_text_encoder = True,
|
48 |
+
stop_text_encoder_training = stptxt,
|
49 |
+
save_n_steps = 0,
|
50 |
+
pretrained_model_name_or_path = model_to_load,
|
51 |
+
instance_data_dir="instance_images",
|
52 |
+
class_data_dir=class_data_dir,
|
53 |
+
output_dir="output_model",
|
54 |
+
instance_prompt="",
|
55 |
+
seed=42,
|
56 |
+
resolution=512,
|
57 |
+
mixed_precision="fp16",
|
58 |
+
train_batch_size=1,
|
59 |
+
gradient_accumulation_steps=1,
|
60 |
+
use_8bit_adam=True,
|
61 |
+
learning_rate=2e-6,
|
62 |
+
lr_scheduler="polynomial",
|
63 |
+
lr_warmup_steps = 0,
|
64 |
+
max_train_steps=Training_Steps,
|
65 |
+
)
|
66 |
+
run_training(args_general)
|
67 |
+
torch.cuda.empty_cache()
|
68 |
+
#convert("output_model", "model.ckpt")
|
69 |
+
#shutil.rmtree('instance_images')
|
70 |
+
#shutil.make_archive("diffusers_model", 'zip', "output_model")
|
71 |
+
#with zipfile.ZipFile('diffusers_model.zip', 'w', zipfile.ZIP_DEFLATED) as zipf:
|
72 |
+
# zipdir('output_model/', zipf)
|
73 |
+
torch.cuda.empty_cache()
|
74 |
+
return [gr.update(visible=True, value=["diffusers_model.zip"]), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)]
|
75 |
+
|
76 |
+
def stop_model(*input):
|
77 |
+
return f"Model with Gradio!"
|
78 |
+
|
79 |
|
80 |
with gr.Blocks() as demo:
|
81 |
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
82 |
with gr.Row():
|
83 |
inp = gr.Textbox(placeholder="What is your name?")
|
84 |
out = gr.Textbox()
|
85 |
+
btn_response = gr.Button("Generate Response")
|
86 |
+
btn_response.click(fn=generate_model, inputs=inp, outputs=out)
|
87 |
+
btn_train = gr.Button("Train Model")
|
88 |
+
btn_train.click(fn=train_model, inputs=[], outputs=out)
|
89 |
+
btn_evaluate = gr.Button("Evaluate Model")
|
90 |
+
btn_evaluate.click(fn=evaluate_model, inputs=[], outputs=out)
|
91 |
+
btn_stop = gr.Button("Stop Model")
|
92 |
+
btn_stop.click(fn=stop_model, inputs=[], outputs=out)
|
93 |
|
94 |
demo.launch()
|