Spaces:
Runtime error
Runtime error
File size: 3,085 Bytes
0384ea1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
__all__ = ['block', 'make_clickable_repo', 'get_submissions']
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi
def make_clickable_repo(name, repo_type):
if repo_type == "spaces":
link = "https://huggingface.co/" + "spaces/" + name
elif repo_type == "models":
link = "https://huggingface.co/" + name
else:
link = "https://huggingface.co/" + "datasets/" + name
return f'<a target="_blank" href="{link}">{name.split("/")[-1]}</a>'
def get_repo_ids(repo_type):
api = HfApi()
if repo_type == "spaces":
repos = api.list_spaces(author="somosnlp")
repos = [s for s in repos if s.id not in ["somosnlp", "somosnlp/likes_leaderboard"]]
elif repo_type == "models":
repos = api.list_models(author="somosnlp", full=True)
else:
repos = api.list_datasets(author="somosnlp")
return repos
def get_submissions(repo_type):
submissions = get_repo_ids(repo_type)
leaderboard = []
for submission in submissions:
leaderboard.append(
(
make_clickable_repo(submission.id, repo_type),
submission.likes,
)
)
df = pd.DataFrame(data=leaderboard, columns=["Repo", "Likes"])
df.sort_values(by=["Likes"], ascending=False, inplace=True)
df.insert(0, "Rank", list(range(1, len(df) + 1)))
return df
block = gr.Blocks()
with block:
gr.Markdown(
"""# Somos NLP ❤️ Leaderboard
"""
)
with gr.Tabs():
with gr.TabItem("Spaces (ML apps)"):
with gr.Row():
spaces_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions, inputs=gr.Variable("spaces"), outputs=spaces_data
)
with gr.TabItem("Models"):
with gr.Row():
models_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions, inputs=gr.Variable("models"), outputs=models_data
)
with gr.TabItem("Datasets"):
with gr.Row():
datasets_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions, inputs=gr.Variable("datasets"), outputs=datasets_data
)
block.load(get_submissions, inputs=gr.Variable("spaces"), outputs=spaces_data)
block.load(get_submissions, inputs=gr.Variable("models"), outputs=models_data)
block.load(get_submissions, inputs=gr.Variable("datasets"), outputs=datasets_data)
block.launch(debug=True) |