Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai, subprocess
|
2 |
+
import gradio as gr
|
3 |
+
from gradio.components import Audio, Textbox
|
4 |
+
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
import tiktoken
|
8 |
+
from transformers import GPT2Tokenizer
|
9 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
10 |
+
import whisper
|
11 |
+
|
12 |
+
import os
|
13 |
+
import dropbox
|
14 |
+
import datetime
|
15 |
+
|
16 |
+
|
17 |
+
ACCESS_TOKEN = os.environ["ACCESS_TOKEN"]
|
18 |
+
dbx = dropbox.Dropbox(ACCESS_TOKEN)
|
19 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
20 |
+
|
21 |
+
initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'}
|
22 |
+
messages = [initial_message]
|
23 |
+
|
24 |
+
answer_count = 0
|
25 |
+
|
26 |
+
# set up whisper model
|
27 |
+
model = whisper.load_model("base")
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301"):
|
32 |
+
"""Returns the number of tokens used by a list of messages."""
|
33 |
+
try:
|
34 |
+
encoding = tiktoken.encoding_for_model(model)
|
35 |
+
except KeyError:
|
36 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
37 |
+
if model == "gpt-3.5-turbo-0301": # note: future models may deviate from this
|
38 |
+
num_tokens = 0
|
39 |
+
for message in messages:
|
40 |
+
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
|
41 |
+
for key, value in message.items():
|
42 |
+
num_tokens += len(encoding.encode(value))
|
43 |
+
if key == "name": # if there's a name, the role is omitted
|
44 |
+
num_tokens += -1 # role is always required and always 1 token
|
45 |
+
num_tokens += 2 # every reply is primed with <im_start>assistant
|
46 |
+
return num_tokens
|
47 |
+
else:
|
48 |
+
raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}.
|
49 |
+
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
|
50 |
+
|
51 |
+
def transcribe(audio, text):
|
52 |
+
|
53 |
+
global messages
|
54 |
+
global answer_count
|
55 |
+
transcript = None
|
56 |
+
|
57 |
+
if audio is not None:
|
58 |
+
audio_file = open(audio, "rb")
|
59 |
+
transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")
|
60 |
+
# transcript = model.transcribe(audio_file, language="english")
|
61 |
+
messages.append({"role": "user", "content": transcript["text"]})
|
62 |
+
|
63 |
+
if transcript is None:
|
64 |
+
# Split the input text into sentences
|
65 |
+
sentences = re.split("(?<=[.!?]) +", text)
|
66 |
+
|
67 |
+
# Initialize a list to store the tokens
|
68 |
+
input_tokens = []
|
69 |
+
|
70 |
+
# Add each sentence to the input_tokens list
|
71 |
+
for sentence in sentences:
|
72 |
+
# Tokenize the sentence using the GPT-2 tokenizer
|
73 |
+
sentence_tokens = tokenizer.encode(sentence)
|
74 |
+
# Check if adding the sentence would exceed the token limit
|
75 |
+
if len(input_tokens) + len(sentence_tokens) < 1440:
|
76 |
+
# Add the sentence tokens to the input_tokens list
|
77 |
+
input_tokens.extend(sentence_tokens)
|
78 |
+
else:
|
79 |
+
# If adding the sentence would exceed the token limit, truncate it
|
80 |
+
sentence_tokens = sentence_tokens[:1440-len(input_tokens)]
|
81 |
+
input_tokens.extend(sentence_tokens)
|
82 |
+
break
|
83 |
+
# Decode the input tokens into text
|
84 |
+
input_text = tokenizer.decode(input_tokens)
|
85 |
+
|
86 |
+
# Add the input text to the messages list
|
87 |
+
messages.append({"role": "user", "content": input_text})
|
88 |
+
|
89 |
+
# Check if the accumulated tokens have exceeded 2096
|
90 |
+
num_tokens = num_tokens_from_messages(messages)
|
91 |
+
if num_tokens > 2096:
|
92 |
+
# Concatenate the chat history
|
93 |
+
chat_transcript = ""
|
94 |
+
for message in messages:
|
95 |
+
if message['role'] != 'system':
|
96 |
+
chat_transcript += f"[ANSWER {answer_count}]" + message['role'] + ": " + message['content'] + "\n\n"
|
97 |
+
# Append the number of tokens used to the end of the chat transcript
|
98 |
+
|
99 |
+
chat_transcript_copy = chat_transcript
|
100 |
+
chat_transcript_copy += f"Number of tokens used: {num_tokens}\n\n"
|
101 |
+
filename = datetime.datetime.now().strftime("%Y%m%d%H%M_conversation_history.txt")
|
102 |
+
dbx.files_upload(chat_transcript_copy.encode('utf-8'), f'/{filename}', mode=dropbox.files.WriteMode.overwrite, autorename=False, client_modified=None, mute=False)
|
103 |
+
dbx.files_upload(chat_transcript_copy.encode('utf-8'), '/conversation_history_note_backup.txt', mode=dropbox.files.WriteMode.overwrite, autorename=False, client_modified=None, mute=False)
|
104 |
+
|
105 |
+
if num_tokens > 2200:
|
106 |
+
# Reset the messages list and answer counter
|
107 |
+
messages = [initial_message]
|
108 |
+
answer_count = 0
|
109 |
+
input_text = 'input too many tokens to be corrected'
|
110 |
+
# Add the input text to the messages list
|
111 |
+
messages.append({"role": "user", "content": input_text})
|
112 |
+
|
113 |
+
# Increment the answer counter
|
114 |
+
answer_count += 1
|
115 |
+
# Add the answer counter to the system message
|
116 |
+
system_message = openai.ChatCompletion.create(
|
117 |
+
model="gpt-3.5-turbo",
|
118 |
+
messages=messages,
|
119 |
+
max_tokens=2000
|
120 |
+
)["choices"][0]["message"]
|
121 |
+
# Add the system message to the messages list
|
122 |
+
messages.append(system_message)
|
123 |
+
|
124 |
+
# Concatenate the chat history
|
125 |
+
chat_transcript = ""
|
126 |
+
for message in messages:
|
127 |
+
if message['role'] != 'system':
|
128 |
+
chat_transcript += f"[ANSWER {answer_count}]" + message['role'] + ": " + message['content'] + "\n\n"
|
129 |
+
# Append the number of tokens used to the end of the chat transcript
|
130 |
+
|
131 |
+
with open("conversation_history.txt", "a") as f:
|
132 |
+
f.write(chat_transcript)
|
133 |
+
|
134 |
+
chat_transcript_copy = chat_transcript
|
135 |
+
chat_transcript_copy += f"Number of tokens used: {num_tokens}\n\n"
|
136 |
+
filename = datetime.datetime.now().strftime("%Y%m%d%H_conversation_history.txt")
|
137 |
+
dbx.files_upload(chat_transcript_copy.encode('utf-8'), f'/{filename}', mode=dropbox.files.WriteMode.overwrite, autorename=False, client_modified=None, mute=False)
|
138 |
+
dbx.files_upload(chat_transcript_copy.encode('utf-8'), '/conversation_history.txt', mode=dropbox.files.WriteMode.overwrite, autorename=False, client_modified=None, mute=False)
|
139 |
+
|
140 |
+
return chat_transcript
|
141 |
+
|
142 |
+
|
143 |
+
audio_input = Audio(source="microphone", type="filepath", label="Record your message")
|
144 |
+
text_input = Textbox(label="Type your message", max_length=4096)
|
145 |
+
|
146 |
+
output_text = gr.outputs.Textbox(label="Response")
|
147 |
+
output_audio = Audio()
|
148 |
+
|
149 |
+
iface = gr.Interface(
|
150 |
+
fn=transcribe,
|
151 |
+
inputs=[audio_input, text_input],
|
152 |
+
# outputs=(["audio", "text"]),
|
153 |
+
outputs="text",
|
154 |
+
title="Your Excellence Never Abates (YENA)",
|
155 |
+
description="Talk to the AI Tutor YENA",
|
156 |
+
capture_session=True,
|
157 |
+
autoplay=True)
|
158 |
+
|
159 |
+
|
160 |
+
# Launch Gradio interface
|
161 |
+
iface.launch()
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
# from transformers import pipeline, T5Tokenizer
|
169 |
+
# import pyttsx3
|
170 |
+
# import threading
|
171 |
+
# import time
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
# Set up speech engine
|
177 |
+
# engine = pyttsx3.init()
|
178 |
+
|
179 |
+
# def speak(text):
|
180 |
+
# # Get the current rate of the engine
|
181 |
+
# rate = engine.getProperty('rate')
|
182 |
+
|
183 |
+
# # Calculate the estimated time in seconds based on the length of the message and the current rate
|
184 |
+
# estimated_time = len(text) / (rate / 10)
|
185 |
+
|
186 |
+
# # Speak the text using the text-to-speech engine
|
187 |
+
|
188 |
+
# engine.say(text)
|
189 |
+
# engine.runAndWait()
|
190 |
+
# if engine._inLoop:
|
191 |
+
# # Wait for the speech engine to finish speaking
|
192 |
+
# time.sleep(estimated_time*1.5)
|
193 |
+
# engine.endLoop()
|