Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,7 @@ model = openai.api_key = os.environ["OPENAI_API_KEY"]
|
|
18 |
# Define the initial message and messages list
|
19 |
initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'}
|
20 |
messages = [initial_message]
|
|
|
21 |
|
22 |
# Define the answer counter
|
23 |
answer_count = 0
|
@@ -29,6 +30,9 @@ def transcribe(audio, text):
|
|
29 |
global messages
|
30 |
global answer_count
|
31 |
|
|
|
|
|
|
|
32 |
# Transcribe the audio if provided
|
33 |
if audio is not None:
|
34 |
audio_file = open(audio, "rb")
|
@@ -58,10 +62,11 @@ def transcribe(audio, text):
|
|
58 |
break
|
59 |
# Decode the input tokens into text
|
60 |
input_text = tokenizer.decode(input_tokens)
|
61 |
-
|
62 |
# Add the input text to the messages list
|
63 |
# messages.append({"role": "user", "content": input_text})
|
64 |
|
|
|
|
|
65 |
|
66 |
# Check if the accumulated tokens have exceeded 2096
|
67 |
num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages)
|
@@ -102,13 +107,12 @@ def transcribe(audio, text):
|
|
102 |
# messages.append(system_message)
|
103 |
|
104 |
# Add the system message to the beginning of the messages list
|
105 |
-
|
106 |
# Add the input text to the messages list
|
107 |
-
|
108 |
-
|
109 |
|
110 |
# Concatenate the chat history
|
111 |
-
chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in
|
112 |
|
113 |
# Append the number of tokens used to the end of the chat transcript
|
114 |
chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
|
|
|
18 |
# Define the initial message and messages list
|
19 |
initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'}
|
20 |
messages = [initial_message]
|
21 |
+
messages_rev = [initial_message]
|
22 |
|
23 |
# Define the answer counter
|
24 |
answer_count = 0
|
|
|
30 |
global messages
|
31 |
global answer_count
|
32 |
|
33 |
+
transcript = {'text': ''}
|
34 |
+
input_text = []
|
35 |
+
|
36 |
# Transcribe the audio if provided
|
37 |
if audio is not None:
|
38 |
audio_file = open(audio, "rb")
|
|
|
62 |
break
|
63 |
# Decode the input tokens into text
|
64 |
input_text = tokenizer.decode(input_tokens)
|
|
|
65 |
# Add the input text to the messages list
|
66 |
# messages.append({"role": "user", "content": input_text})
|
67 |
|
68 |
+
# Add the input text to the messages list
|
69 |
+
messages.append({"role": "user", "content": transcript["text"]+input_text})
|
70 |
|
71 |
# Check if the accumulated tokens have exceeded 2096
|
72 |
num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages)
|
|
|
107 |
# messages.append(system_message)
|
108 |
|
109 |
# Add the system message to the beginning of the messages list
|
110 |
+
messages_rev.insert(0, system_message)
|
111 |
# Add the input text to the messages list
|
112 |
+
messages_rev.insert(0, {"role": "user", "content": input_text + transcript["text"]})
|
|
|
113 |
|
114 |
# Concatenate the chat history
|
115 |
+
chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'system'])
|
116 |
|
117 |
# Append the number of tokens used to the end of the chat transcript
|
118 |
chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
|