son9john commited on
Commit
c447195
·
1 Parent(s): 1bb6473

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -18,6 +18,7 @@ model = openai.api_key = os.environ["OPENAI_API_KEY"]
18
  # Define the initial message and messages list
19
  initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'}
20
  messages = [initial_message]
 
21
 
22
  # Define the answer counter
23
  answer_count = 0
@@ -29,6 +30,9 @@ def transcribe(audio, text):
29
  global messages
30
  global answer_count
31
 
 
 
 
32
  # Transcribe the audio if provided
33
  if audio is not None:
34
  audio_file = open(audio, "rb")
@@ -58,10 +62,11 @@ def transcribe(audio, text):
58
  break
59
  # Decode the input tokens into text
60
  input_text = tokenizer.decode(input_tokens)
61
-
62
  # Add the input text to the messages list
63
  # messages.append({"role": "user", "content": input_text})
64
 
 
 
65
 
66
  # Check if the accumulated tokens have exceeded 2096
67
  num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages)
@@ -102,13 +107,12 @@ def transcribe(audio, text):
102
  # messages.append(system_message)
103
 
104
  # Add the system message to the beginning of the messages list
105
- messages.insert(0, system_message)
106
  # Add the input text to the messages list
107
- messages.insert(0, {"role": "user", "content": input_text + transcript["text"]})
108
-
109
 
110
  # Concatenate the chat history
111
- chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages if message['role'] != 'system'])
112
 
113
  # Append the number of tokens used to the end of the chat transcript
114
  chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
 
18
  # Define the initial message and messages list
19
  initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'}
20
  messages = [initial_message]
21
+ messages_rev = [initial_message]
22
 
23
  # Define the answer counter
24
  answer_count = 0
 
30
  global messages
31
  global answer_count
32
 
33
+ transcript = {'text': ''}
34
+ input_text = []
35
+
36
  # Transcribe the audio if provided
37
  if audio is not None:
38
  audio_file = open(audio, "rb")
 
62
  break
63
  # Decode the input tokens into text
64
  input_text = tokenizer.decode(input_tokens)
 
65
  # Add the input text to the messages list
66
  # messages.append({"role": "user", "content": input_text})
67
 
68
+ # Add the input text to the messages list
69
+ messages.append({"role": "user", "content": transcript["text"]+input_text})
70
 
71
  # Check if the accumulated tokens have exceeded 2096
72
  num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages)
 
107
  # messages.append(system_message)
108
 
109
  # Add the system message to the beginning of the messages list
110
+ messages_rev.insert(0, system_message)
111
  # Add the input text to the messages list
112
+ messages_rev.insert(0, {"role": "user", "content": input_text + transcript["text"]})
 
113
 
114
  # Concatenate the chat history
115
+ chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'system'])
116
 
117
  # Append the number of tokens used to the end of the chat transcript
118
  chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"