import openai import gradio as gr from gradio.components import Audio, Textbox import os import re import tiktoken from transformers import GPT2Tokenizer import whisper import pandas as pd from datetime import datetime, timezone, timedelta import notion_df import concurrent.futures import nltk from nltk.tokenize import sent_tokenize nltk.download('punkt') # # Define the tokenizer and model # tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium') # model = openai.api_key = os.environ["OPENAI_API_KEY"] # # Define the initial message and messages list # initmessage = 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.' # initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'} # messages = [initial_message] # messages_rev = [initial_message] # # Define the answer counter # answer_count = 0 # # Define the Notion API key # API_KEY = os.environ["API_KEY"] import openai import gradio as gr from gradio.components import Audio, Textbox import os import re import tiktoken from transformers import GPT2Tokenizer import whisper import pandas as pd from datetime import datetime, timezone, timedelta import notion_df import concurrent.futures import nltk from nltk.tokenize import sent_tokenize nltk.download('punkt') import spacy from spacy import displacy from gradio import Markdown import threading # Define the tokenizer and model # openai.api_type = "azure" # openai.api_base = "https://yena.openai.azure.com/" # openai.api_version = "2022-12-01" tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium') model = openai.api_key = os.environ["OPENAI_API_KEY"] # Define the initial message and messages list initmessage = 'You are a MCAT Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.' initial_message = {"role": "system", "content": 'You are a MCAT Tutor. Pay especially attention to "testable" or "exam," or any related terms in the input and highlight them as "EXAM TOPIC." Respond ALWAYS quiz me with high yield and relevant qustions on the input and the answers layed out with layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. Expand on each point with great detail lists not sentence.'} messages = [initial_message] messages_rev = [initial_message] # Define the answer counter answer_count = 0 # Define the Notion API key API_KEY = os.environ["API_KEY"] # Define the answer counter answer_count = 0 nlp = spacy.load("en_core_web_sm") def process_nlp(system_message): # Colorize the system message text colorized_text = colorize_text(system_message['content']) return colorized_text def train(text): now_et = datetime.now(timezone(timedelta(hours=-4))) published_date = now_et.strftime('%m-%d-%y %H:%M') df = pd.DataFrame([text]) notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY) def colorize_text(text): colorized_text = "" lines = text.split("\n") for line in lines: doc = nlp(line) for token in doc: if token.ent_type_: colorized_text += f'**{token.text_with_ws}**' elif token.pos_ == 'NOUN': colorized_text += f'{token.text_with_ws}' elif token.pos_ == 'VERB': colorized_text += f'{token.text_with_ws}' elif token.pos_ == 'ADJ': colorized_text += f'{token.text_with_ws}' elif token.pos_ == 'ADV': colorized_text += f'{token.text_with_ws}' elif token.is_digit: colorized_text += f'{token.text_with_ws}' elif token.is_punct: colorized_text += f'{token.text_with_ws}' elif token.is_quote: colorized_text += f'{token.text_with_ws}' else: colorized_text += token.text_with_ws colorized_text += "
" return colorized_text def colorize_and_update(system_message, submit_update): colorized_system_message = colorize_text(system_message['content']) submit_update(None, colorized_system_message) # Pass the colorized_system_message as the second output def update_text_output(system_message, submit_update): submit_update(system_message['content'], None) def transcribe(audio, text, submit_update=None): global messages global answer_count transcript = {'text': ''} input_text = [] # Check if the first word of the first line is "COLORIZE" if text and text.split("\n")[0].split(" ")[0].strip().upper() == "COLORIZE": train(text) colorized_input = colorize_text(text) return text, colorized_input # Transcribe the audio if provided if audio is not None: audio_file = open(audio, "rb") transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en") # Tokenize the text input if text is not None: # Split the input text into sentences sentences = re.split("(?<=[.!?]) +", text) # Initialize a list to store the tokens input_tokens = [] # Add each sentence to the input_tokens list for sentence in sentences: # Tokenize the sentence using the GPT-2 tokenizer sentence_tokens = tokenizer.encode(sentence) # Check if adding the sentence would exceed the token limit if len(input_tokens) + len(sentence_tokens) < 1440: # Add the sentence tokens to the input_tokens list input_tokens.extend(sentence_tokens) else: # If adding the sentence would exceed the token limit, truncate it sentence_tokens = sentence_tokens[:1440-len(input_tokens)] input_tokens.extend(sentence_tokens) break # Decode the input tokens into text input_text = tokenizer.decode(input_tokens) # Add the input text to the messages list messages.append({"role": "user", "content": transcript["text"]+input_text}) # Check if the accumulated tokens have exceeded 2096 num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages) if num_tokens > 2096: # Concatenate the chat history chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages if message['role'] != 'system']) # Append the number of tokens used to the end of the chat transcriptd chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n" # Get the current time in Eastern Time (ET) now_et = datetime.now(timezone(timedelta(hours=-4))) # Format the time as string (YY-MM-DD HH:MM) published_date = now_et.strftime('%m-%d-%y %H:%M') # Upload the chat transcript to Notion df = pd.DataFrame([chat_transcript]) notion_df.upload(df, 'https://www.notion.so/YENA-be569d0a40c940e7b6e0679318215790?pvs=4', title=str(published_date+'back_up'), api_key=API_KEY) # Reset the messages list and answer counter messages = [initial_message] messages.append({"role": "user", "content": initmessage}) answer_count = 0 # Add the input text to the messages list messages.append({"role": "user", "content": input_text}) else: # Increment the answer counter answer_count += 1 # Generate the system message using the OpenAI API with concurrent.futures.ThreadPoolExecutor() as executor: prompt = [{"text": f"{message['role']}: {message['content']}\n\n"} for message in messages] system_message = openai.ChatCompletion.create( model="gpt-4", messages=messages, max_tokens=2000 )["choices"][0]["message"] # Immediately update the text output if submit_update: # Check if submit_update is not None update_text_output(system_message, submit_update) # Add the system message to the messages list messages.append(system_message) # Add the system message to the beginning of the messages list messages_rev.insert(0, system_message) # Add the input text to the messages list messages_rev.insert(0, {"role": "user", "content": input_text + transcript["text"]}) # Start a separate thread to process the colorization and update the Gradio interface if submit_update: # Check if submit_update is not None colorize_thread = threading.Thread(target=colorize_and_update, args=(system_message, submit_update)) colorize_thread.start() # Return the system message immediately chat_transcript = system_message['content'] # with open("./MSK_PS_conversation_history.txt", "a") as f: # f.write(chat_transcript) # Get the current time in Eastern Time (ET) now_et = datetime.now(timezone(timedelta(hours=-4))) # Format the time as string (YY-MM-DD HH:MM) published_date = now_et.strftime('%m-%d-%y %H:%M') # Upload the chat transcript to Notion df = pd.DataFrame([chat_transcript]) notion_df.upload(df, 'https://www.notion.so/YENA-be569d0a40c940e7b6e0679318215790?pvs=4', title=str(published_date+'back_up'), api_key=API_KEY) return system_message['content'], colorize_text(system_message['content']) # Define the input and output components for Gradio audio_input = Audio(source="microphone", type="filepath", label="Record your message") text_input = Textbox(label="Type your message", max_length=4096) # Define the input and output components for Gradio output_text = Textbox(label="Text Output") output_html = Markdown() # Define the Gradio interface iface = gr.Interface( fn=transcribe, inputs=[audio_input, text_input], outputs=[output_text, output_html], # Add both output components title="Hold On, Pain Ends (HOPE)", description="Talk to Your Tutor MCAT HOPE. If you want to colorize your note, type COLORIZE in the first line of your input.", theme="compact", layout="vertical", allow_flagging=False ) # Run the Gradio interface iface.launch()