son9john commited on
Commit
58a3edb
·
1 Parent(s): a850b83

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -2
app.py CHANGED
@@ -10,6 +10,7 @@ import pandas as pd
10
  from datetime import datetime, timezone, timedelta
11
  import notion_df
12
  import concurrent.futures
 
13
 
14
  # Define the tokenizer and model
15
  tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
@@ -126,8 +127,12 @@ def transcribe(audio, text):
126
  df = pd.DataFrame([chat_transcript])
127
  notion_df.upload(df, 'https://www.notion.so/YENA-be569d0a40c940e7b6e0679318215790?pvs=4', title=str(published_date), api_key=API_KEY)
128
 
129
- # Return the chat transcript
130
- return system_message['content']
 
 
 
 
131
 
132
  # Define the input and output components for Gradio
133
  audio_input = Audio(source="microphone", type="filepath", label="Record your message")
@@ -135,11 +140,29 @@ text_input = Textbox(label="Type your message", max_length=4096)
135
  output_text = gr.outputs.Textbox(label="Response")
136
  output_audio = Audio()
137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
  # Define the Gradio interface
139
  iface = gr.Interface(
140
  fn=transcribe,
141
  inputs=[audio_input, text_input],
142
  outputs=[output_text],
 
143
  title="Hold On, Pain Ends (HOPE)",
144
  description="Talk to Your USMLE Tutor HOPE",
145
  theme="compact",
 
10
  from datetime import datetime, timezone, timedelta
11
  import notion_df
12
  import concurrent.futures
13
+ from IPython.core.display import HTML
14
 
15
  # Define the tokenizer and model
16
  tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
 
127
  df = pd.DataFrame([chat_transcript])
128
  notion_df.upload(df, 'https://www.notion.so/YENA-be569d0a40c940e7b6e0679318215790?pvs=4', title=str(published_date), api_key=API_KEY)
129
 
130
+ # Colorize the system message text
131
+ colorized_system_message = colorize_text(system_message['content'])
132
+
133
+ # Return the colorized chat transcript
134
+ return colorized_system_message
135
+
136
 
137
  # Define the input and output components for Gradio
138
  audio_input = Audio(source="microphone", type="filepath", label="Record your message")
 
140
  output_text = gr.outputs.Textbox(label="Response")
141
  output_audio = Audio()
142
 
143
+
144
+ def colorize_text(text):
145
+ doc = nlp(text)
146
+ colorized_text = ""
147
+
148
+ for token in doc:
149
+ if token.ent_type_:
150
+ colorized_text += f'<span style="background-color: yellow;">{token.text_with_ws}</span>'
151
+ elif token.pos_ in {'NOUN'}:
152
+ colorized_text += f'<span style="color: blue;">{token.text_with_ws}</span>'
153
+ else:
154
+ colorized_text += token.text_with_ws
155
+
156
+ return colorized_text
157
+
158
+
159
+
160
  # Define the Gradio interface
161
  iface = gr.Interface(
162
  fn=transcribe,
163
  inputs=[audio_input, text_input],
164
  outputs=[output_text],
165
+ output_text = gr.outputs.HTML(label="Response"),
166
  title="Hold On, Pain Ends (HOPE)",
167
  description="Talk to Your USMLE Tutor HOPE",
168
  theme="compact",