File size: 9,294 Bytes
b8d8517 9d98836 b8d8517 9500372 b8d8517 8e15425 b8d8517 9d98836 4bda5f9 9d98836 b8d8517 a048ee4 c2796c3 4bda5f9 c2796c3 b8d8517 2c8a05a 00212f4 b8d8517 00212f4 b8d8517 94c8733 b8d8517 9500372 b8d8517 9500372 b8d8517 9d98836 b8d8517 8e15425 9d98836 b8d8517 026791e b8d8517 94c8733 b8d8517 9d98836 b8d8517 4694b1a 0b10976 b8d8517 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import openai
import gradio as gr
from gradio.components import Audio, Textbox
import os
import re
import tiktoken
from transformers import GPT2Tokenizer
import whisper
import pandas as pd
from datetime import datetime, timezone, timedelta
import notion_df
import concurrent.futures
import nltk
from nltk.tokenize import sent_tokenize
nltk.download('punkt')
import spacy
from spacy import displacy
from gradio import Markdown
import threading
# Define the tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = openai.api_key = os.environ["OPENAI_API_KEY"]
# Define the initial message and messages list
initialt = 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'
initial_message = {"role": "system", "content": initialt}
messages = [initial_message]
messages_rev = [initial_message]
# Define the answer counter
answer_count = 0
# Define the Notion API key
API_KEY = os.environ["API_KEY"]
nlp = spacy.load("en_core_web_sm")
def process_nlp(system_message):
# Colorize the system message text
colorized_text = colorize_text(system_message['content'])
return colorized_text
def colorize_text(text):
colorized_text = ""
lines = text.split("\n")
for line in lines:
doc = nlp(line)
for token in doc:
if token.ent_type_:
colorized_text += f'**{token.text_with_ws}**'
elif token.pos_ == 'NOUN':
colorized_text += f'<span style="color: #FF3300; background-color: transparent;">{token.text_with_ws}</span>'
elif token.pos_ == 'VERB':
colorized_text += f'<span style="color: #FFFF00; background-color: transparent;">{token.text_with_ws}</span>'
elif token.pos_ == 'ADJ':
colorized_text += f'<span style="color: #00CC00; background-color: transparent;">{token.text_with_ws}</span>'
elif token.pos_ == 'ADV':
colorized_text += f'<span style="color: #FF6600; background-color: transparent;">{token.text_with_ws}</span>'
elif token.is_digit:
colorized_text += f'<span style="color: #9900CC; background-color: transparent;">{token.text_with_ws}</span>'
elif token.is_punct:
colorized_text += f'<span style="color: #8B4513; background-color: transparent;">{token.text_with_ws}</span>'
elif token.is_quote:
colorized_text += f'<span style="color: #008080; background-color: transparent;">{token.text_with_ws}</span>'
else:
colorized_text += token.text_with_ws
colorized_text += "<br>"
return colorized_text
def colorize_and_update(system_message, submit_update):
colorized_system_message = colorize_text(system_message['content'])
submit_update(None, colorized_system_message) # Pass the colorized_system_message as the second output
def update_text_output(system_message, submit_update):
submit_update(system_message['content'], None)
def train(text):
now_et = datetime.now(timezone(timedelta(hours=-4)))
published_date = now_et.strftime('%m-%d-%y %H:%M')
df = pd.DataFrame([text])
notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)
def transcribe(audio, text):
global messages
global answer_count
transcript = {'text': ''}
input_text = []
# Check if the first word of the first line is "COLORIZE"
if text and text.split("\n")[0].split(" ")[0].strip().upper() == "COLORIZE":
train(text)
colorized_input = colorize_text(text)
return text, colorized_input
# Transcribe the audio if provided
if audio is not None:
audio_file = open(audio, "rb")
transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")
# Tokenize the text input
if text is not None:
# Split the input text into sentences
sentences = re.split("(?<=[.!?]) +", text)
# Initialize a list to store the tokens
input_tokens = []
# Add each sentence to the input_tokens list
for sentence in sentences:
# Tokenize the sentence using the GPT-2 tokenizer
sentence_tokens = tokenizer.encode(sentence)
# Check if adding the sentence would exceed the token limit
if len(input_tokens) + len(sentence_tokens) < 1440:
# Add the sentence tokens to the input_tokens list
input_tokens.extend(sentence_tokens)
else:
# If adding the sentence would exceed the token limit, truncate it
sentence_tokens = sentence_tokens[:1440-len(input_tokens)]
input_tokens.extend(sentence_tokens)
break
# Decode the input tokens into text
input_text = tokenizer.decode(input_tokens)
# Add the input text to the messages list
messages.append({"role": "user", "content": transcript["text"]+input_text})
# Check if the accumulated tokens have exceeded 2096
num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages)
if num_tokens > 2096:
# Concatenate the chat history
chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages if message['role'] != 'system'])
# Append the number of tokens used to the end of the chat transcript
chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
# Get the current time in Eastern Time (ET)
now_et = datetime.now(timezone(timedelta(hours=-4)))
# Format the time as string (YY-MM-DD HH:MM)
published_date = now_et.strftime('%m-%d-%y %H:%M')
# Upload the chat transcript to Notion
df = pd.DataFrame([chat_transcript])
notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date+'FULL'), api_key=API_KEY)
messages = [initial_message]
messages.append({"role": "user", "content": initialt})
answer_count = 0
# Add the input text to the messages list
messages.append({"role": "user", "content": input_text})
else:
# Increment the answer counter
answer_count += 1
# Generate the system message using the OpenAI API
with concurrent.futures.ThreadPoolExecutor() as executor:
prompt = [{"text": f"{message['role']}: {message['content']}\n\n"} for message in messages]
system_message = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=2000
)["choices"][0]["message"]
# Wait for the completion of the OpenAI API call
if submit_update: # Check if submit_update is not None
update_text_output(system_message, submit_update)
# Add the system message to the messages list
messages.append(system_message)
# Add the system message to the beginning of the messages list
messages_rev.insert(0, system_message)
# Add the input text to the messages list
messages_rev.insert(0, {"role": "user", "content": input_text + transcript["text"]})
# Start a separate thread to process the colorization and update the Gradio interface
if submit_update: # Check if submit_update is not None
colorize_thread = threading.Thread(target=colorize_and_update, args=(system_message, submit_update))
colorize_thread.start()
# Concatenate the chat history
chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'system'])
# Append the number of tokens used to the end of the chat transcript
chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
# Save the chat transcript to a file
with open("conversation_history.txt", "a") as f:
f.write(chat_transcript)
# Upload the chat transcript to Notion
now_et = datetime.now(timezone(timedelta(hours=-4)))
published_date = now_et.strftime('%m-%d-%y %H:%M')
df = pd.DataFrame([chat_transcript])
notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)
# Return the chat transcript
return system_message['content'], colorize_text(system_message['content'])
# Define the input and output components for Gradio
audio_input = Audio(source="microphone", type="filepath", label="Record your message")
text_input = Textbox(label="Type your message", max_length=4096)
output_text = gr.outputs.Textbox(label="Response")
output_audio = Audio()
# Define the Gradio interface
iface = gr.Interface(
fn=transcribe,
inputs=[audio_input, text_input],
outputs=[output_text],
title="Hold On, Pain Ends (HOPE)",
description="Talk to Your USMLE Tutor HOPE",
theme="compact",
layout="vertical",
allow_flagging=False
)
# Run the Gradio interface
iface.launch() |