Spaces:
son9john
/
Runtime error

File size: 9,294 Bytes
b8d8517
 
 
 
 
 
 
 
 
 
 
 
9d98836
 
 
 
 
 
 
b8d8517
 
 
 
 
 
9500372
 
b8d8517
8e15425
b8d8517
 
 
 
 
 
 
9d98836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bda5f9
 
 
 
 
 
9d98836
 
b8d8517
 
 
a048ee4
 
 
c2796c3
 
4bda5f9
c2796c3
 
 
b8d8517
 
 
2c8a05a
00212f4
b8d8517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00212f4
 
b8d8517
 
 
 
 
 
 
 
 
 
 
94c8733
b8d8517
 
 
 
 
 
 
 
9500372
b8d8517
9500372
 
b8d8517
 
 
 
 
 
 
 
 
 
 
 
 
 
9d98836
 
 
b8d8517
 
8e15425
 
 
 
 
 
9d98836
 
 
 
 
b8d8517
026791e
b8d8517
 
 
 
 
 
 
 
 
94c8733
b8d8517
 
 
 
9d98836
 
 
b8d8517
 
 
 
 
 
 
 
 
 
 
 
4694b1a
0b10976
b8d8517
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import openai
import gradio as gr
from gradio.components import Audio, Textbox
import os
import re
import tiktoken
from transformers import GPT2Tokenizer
import whisper
import pandas as pd
from datetime import datetime, timezone, timedelta
import notion_df
import concurrent.futures
import nltk
from nltk.tokenize import sent_tokenize
nltk.download('punkt')
import spacy
from spacy import displacy
from gradio import Markdown
import threading

# Define the tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = openai.api_key = os.environ["OPENAI_API_KEY"]

# Define the initial message and messages list
initialt = 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'
initial_message = {"role": "system", "content": initialt}
messages = [initial_message]
messages_rev = [initial_message]

# Define the answer counter
answer_count = 0

# Define the Notion API key
API_KEY = os.environ["API_KEY"]


nlp = spacy.load("en_core_web_sm")
def process_nlp(system_message):
    # Colorize the system message text
    colorized_text = colorize_text(system_message['content'])
    return colorized_text

def colorize_text(text):
    colorized_text = ""
    lines = text.split("\n")

    for line in lines:
        doc = nlp(line)
        for token in doc:
            if token.ent_type_:
                colorized_text += f'**{token.text_with_ws}**'
            elif token.pos_ == 'NOUN':
                colorized_text += f'<span style="color: #FF3300; background-color: transparent;">{token.text_with_ws}</span>'
            elif token.pos_ == 'VERB':
                colorized_text += f'<span style="color: #FFFF00; background-color: transparent;">{token.text_with_ws}</span>'
            elif token.pos_ == 'ADJ':
                colorized_text += f'<span style="color: #00CC00; background-color: transparent;">{token.text_with_ws}</span>'
            elif token.pos_ == 'ADV':
                colorized_text += f'<span style="color: #FF6600; background-color: transparent;">{token.text_with_ws}</span>'
            elif token.is_digit:
                colorized_text += f'<span style="color: #9900CC; background-color: transparent;">{token.text_with_ws}</span>'
            elif token.is_punct:
                colorized_text += f'<span style="color: #8B4513; background-color: transparent;">{token.text_with_ws}</span>'
            elif token.is_quote:
                colorized_text += f'<span style="color: #008080; background-color: transparent;">{token.text_with_ws}</span>'
            else:
                colorized_text += token.text_with_ws
        colorized_text += "<br>"

    return colorized_text

def colorize_and_update(system_message, submit_update):
    colorized_system_message = colorize_text(system_message['content'])
    submit_update(None, colorized_system_message)  # Pass the colorized_system_message as the second output

def update_text_output(system_message, submit_update):
    submit_update(system_message['content'], None)
    
def train(text):
    now_et = datetime.now(timezone(timedelta(hours=-4)))
    published_date = now_et.strftime('%m-%d-%y %H:%M')
    df = pd.DataFrame([text])
    notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)


def transcribe(audio, text):
    global messages
    global answer_count
    transcript = {'text': ''} 
    input_text = []
    
    # Check if the first word of the first line is "COLORIZE"
    if text and text.split("\n")[0].split(" ")[0].strip().upper() == "COLORIZE":
        train(text)
        colorized_input = colorize_text(text)
        return text, colorized_input
    
    # Transcribe the audio if provided
    if audio is not None:
        audio_file = open(audio, "rb")
        transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")
        
    # Tokenize the text input
    if text is not None:
        # Split the input text into sentences
        sentences = re.split("(?<=[.!?]) +", text)
    
        # Initialize a list to store the tokens
        input_tokens = []
    
        # Add each sentence to the input_tokens list
        for sentence in sentences:
            # Tokenize the sentence using the GPT-2 tokenizer
            sentence_tokens = tokenizer.encode(sentence)
            # Check if adding the sentence would exceed the token limit
            if len(input_tokens) + len(sentence_tokens) < 1440:
                # Add the sentence tokens to the input_tokens list
                input_tokens.extend(sentence_tokens)
            else:
                # If adding the sentence would exceed the token limit, truncate it
                sentence_tokens = sentence_tokens[:1440-len(input_tokens)]
                input_tokens.extend(sentence_tokens)
                break
        # Decode the input tokens into text
        input_text = tokenizer.decode(input_tokens)
    
    # Add the input text to the messages list
    messages.append({"role": "user", "content": transcript["text"]+input_text})

    # Check if the accumulated tokens have exceeded 2096
    num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages)
    if num_tokens > 2096:
        # Concatenate the chat history
        chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages if message['role'] != 'system'])

        # Append the number of tokens used to the end of the chat transcript
        chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"

        # Get the current time in Eastern Time (ET)
        now_et = datetime.now(timezone(timedelta(hours=-4)))
        # Format the time as string (YY-MM-DD HH:MM)
        published_date = now_et.strftime('%m-%d-%y %H:%M')

        # Upload the chat transcript to Notion
        df = pd.DataFrame([chat_transcript])
        notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date+'FULL'), api_key=API_KEY)

        messages = [initial_message]
        messages.append({"role": "user", "content": initialt})
        answer_count = 0
        # Add the input text to the messages list
        messages.append({"role": "user", "content": input_text})
    else:
        # Increment the answer counter
        answer_count += 1

    # Generate the system message using the OpenAI API
    with concurrent.futures.ThreadPoolExecutor() as executor:
        prompt = [{"text": f"{message['role']}: {message['content']}\n\n"} for message in messages]
        system_message = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            max_tokens=2000
        )["choices"][0]["message"]
    # Wait for the completion of the OpenAI API call
        
    if submit_update:  # Check if submit_update is not None
        update_text_output(system_message, submit_update)

    # Add the system message to the messages list
    messages.append(system_message)

    # Add the system message to the beginning of the messages list
    messages_rev.insert(0, system_message)
    # Add the input text to the messages list
    messages_rev.insert(0, {"role": "user", "content": input_text + transcript["text"]})

    # Start a separate thread to process the colorization and update the Gradio interface
    if submit_update:  # Check if submit_update is not None
        colorize_thread = threading.Thread(target=colorize_and_update, args=(system_message, submit_update))
        colorize_thread.start()

    # Concatenate the chat history
    chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'system'])
    
    # Append the number of tokens used to the end of the chat transcript
    chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
    
    # Save the chat transcript to a file
    with open("conversation_history.txt", "a") as f:
        f.write(chat_transcript)
    
    # Upload the chat transcript to Notion
    now_et = datetime.now(timezone(timedelta(hours=-4)))
    published_date = now_et.strftime('%m-%d-%y %H:%M')
    df = pd.DataFrame([chat_transcript])
    notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)
    
    # Return the chat transcript    
    return system_message['content'], colorize_text(system_message['content'])

    
# Define the input and output components for Gradio
audio_input = Audio(source="microphone", type="filepath", label="Record your message")
text_input = Textbox(label="Type your message", max_length=4096)
output_text = gr.outputs.Textbox(label="Response")
output_audio = Audio()

# Define the Gradio interface
iface = gr.Interface(
    fn=transcribe,
    inputs=[audio_input, text_input],
    outputs=[output_text],
    title="Hold On, Pain Ends (HOPE)",
    description="Talk to Your USMLE Tutor HOPE",
    theme="compact",
    layout="vertical",
    allow_flagging=False
    )

# Run the Gradio interface
iface.launch()