Spaces:
son9john
/
Runtime error

File size: 13,645 Bytes
b8d8517
 
 
 
 
 
 
 
 
 
 
 
9d98836
 
 
 
 
 
 
b8d8517
 
 
 
 
 
9500372
 
b8d8517
8e15425
b8d8517
 
 
 
 
 
 
9d98836
 
8217f9e
9d98836
 
 
 
 
8217f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d98836
 
8217f9e
 
 
 
 
 
9d98836
8217f9e
9d98836
8217f9e
9d98836
8217f9e
9d98836
8217f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d98836
8217f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d98836
 
 
8217f9e
9d98836
 
 
 
 
 
4bda5f9
 
 
 
 
 
9d98836
 
00a86c2
b8d8517
 
a048ee4
 
 
c2796c3
 
4bda5f9
c2796c3
 
 
b8d8517
 
 
2c8a05a
00212f4
b8d8517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00212f4
 
b8d8517
 
 
 
 
 
 
 
 
 
 
94c8733
b8d8517
 
 
 
 
 
 
 
9500372
b8d8517
9500372
 
b8d8517
 
 
 
 
 
 
 
 
 
 
 
 
 
9d98836
 
 
b8d8517
 
8e15425
 
 
 
 
 
9d98836
 
 
 
 
b8d8517
026791e
b8d8517
 
 
 
 
 
 
 
 
94c8733
b8d8517
 
 
 
9d98836
 
 
b8d8517
 
 
 
fc0ba1d
 
b8d8517
 
 
 
 
 
fc0ba1d
4694b1a
cd2c8a9
b8d8517
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import openai
import gradio as gr
from gradio.components import Audio, Textbox
import os
import re
import tiktoken
from transformers import GPT2Tokenizer
import whisper
import pandas as pd
from datetime import datetime, timezone, timedelta
import notion_df
import concurrent.futures
import nltk
from nltk.tokenize import sent_tokenize
nltk.download('punkt')
import spacy
from spacy import displacy
from gradio import Markdown
import threading

# Define the tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = openai.api_key = os.environ["OPENAI_API_KEY"]

# Define the initial message and messages list
initialt = 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'
initial_message = {"role": "system", "content": initialt}
messages = [initial_message]
messages_rev = [initial_message]

# Define the answer counter
answer_count = 0

# Define the Notion API key
API_KEY = os.environ["API_KEY"]


nlp = spacy.load("en_core_web_sm")

def process_nlp(system_message):
    # Colorize the system message text
    colorized_text = colorize_text(system_message['content'])
    return colorized_text

from colour import Color

# define color combinations for different parts of speech
COLORS = {
    "NOUN": "#000000",  # Black
    "VERB": "#ff6936",  # Orange
    "ADJ": "#4363d8",   # Blue
    "ADV": "#228b22",   # Green
    "digit": "#9a45d6", # Purple
    "punct": "#ffcc00", # Yellow
    "quote": "#b300b3"  # Magenta
}

# define color combinations for individuals with dyslexia and color vision deficiencies
DYSLEXIA_COLORS = {
    "NOUN": "#000000",
    "VERB": "#ff6936",
    "ADJ": "#4363d8",
    "ADV": "#228b22",
    "digit": "#9a45d6",
    "punct": "#ffcc00",
    "quote": "#b300b3",
}
RED_GREEN_COLORS = {
    "NOUN": "#000000",
    "VERB": "#fe642e",  # Lighter orange
    "ADJ": "#2e86c1",   # Lighter blue
    "ADV": "#82e0aa",   # Lighter green
    "digit": "#aa6c39", # Brown
    "punct": "#f0b27a", # Lighter yellow
    "quote": "#9932cc"  # Darker magenta
}

# define a muted background color
BACKGROUND_COLOR = "#ffffff"  # White

# define font and size
FONT = "OpenDyslexic"
FONT_SIZE = "18px"

def colorize_text(text, colors=DYSLEXIA_COLORS, background_color=None, font=FONT, font_size=FONT_SIZE):
    if colors is None:
        colors = COLORS
    colorized_text = ""
    lines = text.split("\n")
    
    # set background color
    if background_color is None:
        background_color = BACKGROUND_COLOR
    
    # iterate over the lines in the text
    for line in lines:
        # parse the line with the language model
        doc = nlp(line)
        # iterate over the tokens in the line
        for token in doc:
            # check if the token is an entity
            if token.ent_type_:
                # use dyslexia colors for entity if available
                if colors == COLORS:
                    color = DYSLEXIA_COLORS.get(token.pos_, None)
                else:
                    color = colors.get(token.pos_, None)
                # check if a color is available for the token
                if color is not None:
                    colorized_text += (
                        f'<span style="color: {color}; '
                        f'background-color: {background_color}; '
                        f'font-family: {font}; '
                        f'font-size: {font_size}; '
                        f'font-weight: bold; '
                        f'text-decoration: none; '
                        f'padding-right: 0.5em;">'
                        f"{token.text}</span>"
                    )
                else:
                    colorized_text += (
                        f'<span style="font-family: {font}; '
                        f'font-size: {font_size}; '
                        f'font-weight: bold; '
                        f'text-decoration: none; '
                        f'padding-right: 0.5em;">'
                        f"{token.text}</span>"
                    )
            else:
                # check if a color is available for the token
                color = colors.get(token.pos_, None)
                if color is not None:
                    colorized_text += (
                        f'<span style="color: {color}; '
                        f'background-color: {background_color}; '
                        f'font-family: {font}; '
                        f'font-size: {font_size}; '
                        f'font-weight: bold; '
                        f'text-decoration: none; '
                        f'padding-right: 0.5em;">'
                        f"{token.text}</span>"
                    )
                elif token.is_digit:
                    colorized_text += (
                        f'<span style="color: {colors["digit"]}; '
                        f'background-color: {background_color}; '
                        f'font-family: {font}; '
                        f'font-size: {font_size}; '
                        f'font-weight: bold; '
                        f'text-decoration: none; '
                        f'padding-right: 0.5em;">'
                        f"{token.text}</span>"
                    )
                elif token.is_punct:
                    colorized_text += (
                        f'<span style="color: {colors["punct"]}; '
                        f'background-color: {background_color}; '
                        f'font-family: {font}; '
                        f'font-size: {font_size}; '
                        f'font-weight: bold; '
                        f'text-decoration: none; '
                        f'padding-right: 0.5em;">'
                        f"{token.text}</span>"
                    )
                elif token.is_quote:
                    colorized_text += (
                        f'<span style="color: {colors["quote"]}; '
                        f'background-color: {background_color}; '
                        f'font-family: {font}; '
                        f'font-size: {font_size}; '
                        f'text-decoration: none; '
                        f'padding-right: 0.5em;">'
                        f"{token.text}</span>"
                    )
                else:
                    # use larger font size for specific parts of speech, such as nouns and verbs
                    font_size = FONT_SIZE
                    if token.pos_ in ["NOUN", "VERB"]:
                        font_size = "22px"
                    colorized_text += (
                        f'<span style="font-family: {font}; '
                        f'font-size: {font_size}; '
                        f'font-weight: bold; '
                        f'text-decoration: none; '
                        f'padding-right: 0.5em;">'
                        f"{token.text}</span>"
                    )
        colorized_text += "<br>"
    return colorized_text


def colorize_and_update(system_message, submit_update):
    colorized_system_message = colorize_text(system_message['content'])
    submit_update(None, colorized_system_message)  # Pass the colorized_system_message as the second output

def update_text_output(system_message, submit_update):
    submit_update(system_message['content'], None)
    
def train(text):
    now_et = datetime.now(timezone(timedelta(hours=-4)))
    published_date = now_et.strftime('%m-%d-%y %H:%M')
    df = pd.DataFrame([text])
    notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)


def transcribe(audio, text, submit_update=None):
    global messages
    global answer_count
    transcript = {'text': ''} 
    input_text = []
    
    # Check if the first word of the first line is "COLORIZE"
    if text and text.split("\n")[0].split(" ")[0].strip().upper() == "COLORIZE":
        train(text)
        colorized_input = colorize_text(text)
        return text, colorized_input
    
    # Transcribe the audio if provided
    if audio is not None:
        audio_file = open(audio, "rb")
        transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")
        
    # Tokenize the text input
    if text is not None:
        # Split the input text into sentences
        sentences = re.split("(?<=[.!?]) +", text)
    
        # Initialize a list to store the tokens
        input_tokens = []
    
        # Add each sentence to the input_tokens list
        for sentence in sentences:
            # Tokenize the sentence using the GPT-2 tokenizer
            sentence_tokens = tokenizer.encode(sentence)
            # Check if adding the sentence would exceed the token limit
            if len(input_tokens) + len(sentence_tokens) < 1440:
                # Add the sentence tokens to the input_tokens list
                input_tokens.extend(sentence_tokens)
            else:
                # If adding the sentence would exceed the token limit, truncate it
                sentence_tokens = sentence_tokens[:1440-len(input_tokens)]
                input_tokens.extend(sentence_tokens)
                break
        # Decode the input tokens into text
        input_text = tokenizer.decode(input_tokens)
    
    # Add the input text to the messages list
    messages.append({"role": "user", "content": transcript["text"]+input_text})

    # Check if the accumulated tokens have exceeded 2096
    num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages)
    if num_tokens > 2096:
        # Concatenate the chat history
        chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages if message['role'] != 'system'])

        # Append the number of tokens used to the end of the chat transcript
        chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"

        # Get the current time in Eastern Time (ET)
        now_et = datetime.now(timezone(timedelta(hours=-4)))
        # Format the time as string (YY-MM-DD HH:MM)
        published_date = now_et.strftime('%m-%d-%y %H:%M')

        # Upload the chat transcript to Notion
        df = pd.DataFrame([chat_transcript])
        notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date+'FULL'), api_key=API_KEY)

        messages = [initial_message]
        messages.append({"role": "user", "content": initialt})
        answer_count = 0
        # Add the input text to the messages list
        messages.append({"role": "user", "content": input_text})
    else:
        # Increment the answer counter
        answer_count += 1

    # Generate the system message using the OpenAI API
    with concurrent.futures.ThreadPoolExecutor() as executor:
        prompt = [{"text": f"{message['role']}: {message['content']}\n\n"} for message in messages]
        system_message = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            max_tokens=2000
        )["choices"][0]["message"]
    # Wait for the completion of the OpenAI API call
        
    if submit_update:  # Check if submit_update is not None
        update_text_output(system_message, submit_update)

    # Add the system message to the messages list
    messages.append(system_message)

    # Add the system message to the beginning of the messages list
    messages_rev.insert(0, system_message)
    # Add the input text to the messages list
    messages_rev.insert(0, {"role": "user", "content": input_text + transcript["text"]})

    # Start a separate thread to process the colorization and update the Gradio interface
    if submit_update:  # Check if submit_update is not None
        colorize_thread = threading.Thread(target=colorize_and_update, args=(system_message, submit_update))
        colorize_thread.start()

    # Concatenate the chat history
    chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'system'])
    
    # Append the number of tokens used to the end of the chat transcript
    chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
    
    # Save the chat transcript to a file
    with open("conversation_history.txt", "a") as f:
        f.write(chat_transcript)
    
    # Upload the chat transcript to Notion
    now_et = datetime.now(timezone(timedelta(hours=-4)))
    published_date = now_et.strftime('%m-%d-%y %H:%M')
    df = pd.DataFrame([chat_transcript])
    notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)
    
    # Return the chat transcript    
    return system_message['content'], colorize_text(system_message['content'])

    
# Define the input and output components for Gradio
audio_input = Audio(source="microphone", type="filepath", label="Record your message")
text_input = Textbox(label="Type your message", max_length=4096)
output_text = Textbox(label="Text Output")
output_html = Markdown()
output_audio = Audio()

# Define the Gradio interface
iface = gr.Interface(
    fn=transcribe,
    inputs=[audio_input, text_input],
    outputs=[output_text, output_html],
    title="Hold On, Pain Ends (HOPE)",
    description="Talk to Your USMLE Tutor HOPE. \n If you want to colorize your note, type COLORIZE in the first line of your input.",
    theme="compact",
    layout="vertical",
    allow_flagging=False
    )

# Run the Gradio interface
iface.launch()