File size: 11,265 Bytes
1e6d67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# LoRA for token classification

Low-Rank Adaptation (LoRA) is a reparametrization method that aims to reduce the number of trainable parameters with low-rank representations. The weight matrix is broken down into low-rank matrices that are trained and updated. All the pretrained model parameters remain frozen. After training, the low-rank matrices are added back to the original weights. This makes it more efficient to store and train a LoRA model because there are significantly fewer parameters.

<Tip>

💡 Read [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) to learn more about LoRA.

</Tip>

This guide will show you how to train a [`roberta-large`](https://huggingface.co/roberta-large) model with LoRA on the [BioNLP2004](https://huggingface.co/datasets/tner/bionlp2004) dataset for token classification.

Before you begin, make sure you have all the necessary libraries installed:

```bash
!pip install -q peft transformers datasets evaluate seqeval
```

## Setup

Let's start by importing all the necessary libraries you'll need:

- 🤗 Transformers for loading the base `roberta-large` model and tokenizer, and handling the training loop
- 🤗 Datasets for loading and preparing the `bionlp2004` dataset for training
- 🤗 Evaluate for evaluating the model's performance
- 🤗 PEFT for setting up the LoRA configuration and creating the PEFT model

```py
from datasets import load_dataset
from transformers import (
    AutoModelForTokenClassification,
    AutoTokenizer,
    DataCollatorForTokenClassification,
    TrainingArguments,
    Trainer,
)
from peft import get_peft_config, PeftModel, PeftConfig, get_peft_model, LoraConfig, TaskType
import evaluate
import torch
import numpy as np

model_checkpoint = "roberta-large"
lr = 1e-3
batch_size = 16
num_epochs = 10
```

## Load dataset and metric

The [BioNLP2004](https://huggingface.co/datasets/tner/bionlp2004) dataset includes tokens and tags for biological structures like DNA, RNA and proteins. Load the dataset:

```py
bionlp = load_dataset("tner/bionlp2004")
bionlp["train"][0]
{
    "tokens": [
        "Since",
        "HUVECs",
        "released",
        "superoxide",
        "anions",
        "in",
        "response",
        "to",
        "TNF",
        ",",
        "and",
        "H2O2",
        "induces",
        "VCAM-1",
        ",",
        "PDTC",
        "may",
        "act",
        "as",
        "a",
        "radical",
        "scavenger",
        ".",
    ],
    "tags": [0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0],
}
```

The `tags` values are defined in the label ids [dictionary](https://huggingface.co/datasets/tner/bionlp2004#label-id). The letter that prefixes each label indicates the token position: `B` is for the first token of an entity, `I` is for a token inside the entity, and `0` is for a token that is not part of an entity.

```py
{
    "O": 0,
    "B-DNA": 1,
    "I-DNA": 2,
    "B-protein": 3,
    "I-protein": 4,
    "B-cell_type": 5,
    "I-cell_type": 6,
    "B-cell_line": 7,
    "I-cell_line": 8,
    "B-RNA": 9,
    "I-RNA": 10,
}
```

Then load the [`seqeval`](https://huggingface.co/spaces/evaluate-metric/seqeval) framework which includes several metrics - precision, accuracy, F1, and recall - for evaluating sequence labeling tasks.

```py
seqeval = evaluate.load("seqeval")
```

Now you can write an evaluation function to compute the metrics from the model predictions and labels, and return the precision, recall, F1, and accuracy scores:

```py
label_list = [
    "O",
    "B-DNA",
    "I-DNA",
    "B-protein",
    "I-protein",
    "B-cell_type",
    "I-cell_type",
    "B-cell_line",
    "I-cell_line",
    "B-RNA",
    "I-RNA",
]


def compute_metrics(p):
    predictions, labels = p
    predictions = np.argmax(predictions, axis=2)

    true_predictions = [
        [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
        for prediction, label in zip(predictions, labels)
    ]
    true_labels = [
        [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
        for prediction, label in zip(predictions, labels)
    ]

    results = seqeval.compute(predictions=true_predictions, references=true_labels)
    return {
        "precision": results["overall_precision"],
        "recall": results["overall_recall"],
        "f1": results["overall_f1"],
        "accuracy": results["overall_accuracy"],
    }
```

## Preprocess dataset

Initialize a tokenizer and make sure you set `is_split_into_words=True` because the text sequence has already been split into words. However, this doesn't mean it is tokenized yet (even though it may look like it!), and you'll need to further tokenize the words into subwords.

```py
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True)
```

You'll also need to write a function to:

1. Map each token to their respective word with the [`~transformers.BatchEncoding.word_ids`] method.
2. Ignore the special tokens by setting them to `-100`.
3. Label the first token of a given entity.

```py
def tokenize_and_align_labels(examples):
    tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True)

    labels = []
    for i, label in enumerate(examples[f"tags"]):
        word_ids = tokenized_inputs.word_ids(batch_index=i)
        previous_word_idx = None
        label_ids = []
        for word_idx in word_ids:
            if word_idx is None:
                label_ids.append(-100)
            elif word_idx != previous_word_idx:
                label_ids.append(label[word_idx])
            else:
                label_ids.append(-100)
            previous_word_idx = word_idx
        labels.append(label_ids)

    tokenized_inputs["labels"] = labels
    return tokenized_inputs
```

Use [`~datasets.Dataset.map`] to apply the `tokenize_and_align_labels` function to the dataset:

```py
tokenized_bionlp = bionlp.map(tokenize_and_align_labels, batched=True)
```

Finally, create a data collator to pad the examples to the longest length in a batch:

```py
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
```

## Train

Now you're ready to create a [`PeftModel`]. Start by loading the base `roberta-large` model, the number of expected labels, and the `id2label` and `label2id` dictionaries:

```py
id2label = {
    0: "O",
    1: "B-DNA",
    2: "I-DNA",
    3: "B-protein",
    4: "I-protein",
    5: "B-cell_type",
    6: "I-cell_type",
    7: "B-cell_line",
    8: "I-cell_line",
    9: "B-RNA",
    10: "I-RNA",
}
label2id = {
    "O": 0,
    "B-DNA": 1,
    "I-DNA": 2,
    "B-protein": 3,
    "I-protein": 4,
    "B-cell_type": 5,
    "I-cell_type": 6,
    "B-cell_line": 7,
    "I-cell_line": 8,
    "B-RNA": 9,
    "I-RNA": 10,
}

model = AutoModelForTokenClassification.from_pretrained(
    model_checkpoint, num_labels=11, id2label=id2label, label2id=label2id
)
```

Define the [`LoraConfig`] with:

- `task_type`, token classification (`TaskType.TOKEN_CLS`)
- `r`, the dimension of the low-rank matrices
- `lora_alpha`, scaling factor for the weight matrices
- `lora_dropout`, dropout probability of the LoRA layers
- `bias`, set to `all` to train all bias parameters

<Tip>

💡 The weight matrix is scaled by `lora_alpha/r`, and a higher `lora_alpha` value assigns more weight to the LoRA activations. For performance, we recommend setting `bias` to `None` first, and then `lora_only`, before trying `all`.

</Tip>

```py
peft_config = LoraConfig(
    task_type=TaskType.TOKEN_CLS, inference_mode=False, r=16, lora_alpha=16, lora_dropout=0.1, bias="all"
)
```

Pass the base model and `peft_config` to the [`get_peft_model`] function to create a [`PeftModel`]. You can check out how much more efficient training the [`PeftModel`] is compared to fully training the base model by printing out the trainable parameters:

```py
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
"trainable params: 1855499 || all params: 355894283 || trainable%: 0.5213624069370061"
```

From the 🤗 Transformers library, create a [`~transformers.TrainingArguments`] class and specify where you want to save the model to, the training hyperparameters, how to evaluate the model, and when to save the checkpoints:

```py
training_args = TrainingArguments(
    output_dir="roberta-large-lora-token-classification",
    learning_rate=lr,
    per_device_train_batch_size=batch_size,
    per_device_eval_batch_size=batch_size,
    num_train_epochs=num_epochs,
    weight_decay=0.01,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    load_best_model_at_end=True,
)
```

Pass the model, `TrainingArguments`, datasets, tokenizer, data collator and evaluation function to the [`~transformers.Trainer`] class. The `Trainer` handles the training loop for you, and when you're ready, call [`~transformers.Trainer.train`] to begin!

```py
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_bionlp["train"],
    eval_dataset=tokenized_bionlp["validation"],
    tokenizer=tokenizer,
    data_collator=data_collator,
    compute_metrics=compute_metrics,
)

trainer.train()
```

## Share model

Once training is complete, you can store and share your model on the Hub if you'd like. Log in to your Hugging Face account and enter your token when prompted:

```py
from huggingface_hub import notebook_login

notebook_login()
```

Upload the model to a specific model repository on the Hub with the [`~transformers.PreTrainedModel.push_to_hub`] method:

```py
model.push_to_hub("your-name/roberta-large-lora-token-classification")
```

## Inference

To use your model for inference, load the configuration and model:

```py
peft_model_id = "stevhliu/roberta-large-lora-token-classification"
config = PeftConfig.from_pretrained(peft_model_id)
inference_model = AutoModelForTokenClassification.from_pretrained(
    config.base_model_name_or_path, num_labels=11, id2label=id2label, label2id=label2id
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(inference_model, peft_model_id)
```

Get some text to tokenize:

```py
text = "The activation of IL-2 gene expression and NF-kappa B through CD28 requires reactive oxygen production by 5-lipoxygenase."
inputs = tokenizer(text, return_tensors="pt")
```

Pass the inputs to the model, and print out the model prediction for each token:

```py
with torch.no_grad():
    logits = model(**inputs).logits

tokens = inputs.tokens()
predictions = torch.argmax(logits, dim=2)

for token, prediction in zip(tokens, predictions[0].numpy()):
    print((token, model.config.id2label[prediction]))
("<s>", "O")
("The", "O")
("Ġactivation", "O")
("Ġof", "O")
("ĠIL", "B-DNA")
("-", "O")
("2", "I-DNA")
("Ġgene", "O")
("Ġexpression", "O")
("Ġand", "O")
("ĠNF", "B-protein")
("-", "O")
("k", "I-protein")
("appa", "I-protein")
("ĠB", "I-protein")
("Ġthrough", "O")
("ĠCD", "B-protein")
("28", "I-protein")
("Ġrequires", "O")
("Ġreactive", "O")
("Ġoxygen", "O")
("Ġproduction", "O")
("Ġby", "O")
("Ġ5", "B-protein")
("-", "O")
("lip", "I-protein")
("oxy", "I-protein")
("gen", "I-protein")
("ase", "I-protein")
(".", "O")
("</s>", "O")
```