sonalkum's picture
bug fix
fa57c60
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DistilBERT
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/models?filter=distilbert">
<img alt="Models" src="https://img.shields.io/badge/All_model_pages-distilbert-blueviolet">
</a>
<a href="https://huggingface.co/spaces/docs-demos/distilbert-base-uncased">
<img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
</a>
</div>
## Overview
The DistilBERT model was proposed in the blog post [Smaller, faster, cheaper, lighter: Introducing DistilBERT, a
distilled version of BERT](https://medium.com/huggingface/distilbert-8cf3380435b5), and the paper [DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108). DistilBERT is a
small, fast, cheap and light Transformer model trained by distilling BERT base. It has 40% less parameters than
*bert-base-uncased*, runs 60% faster while preserving over 95% of BERT's performances as measured on the GLUE language
understanding benchmark.
The abstract from the paper is the following:
*As Transfer Learning from large-scale pre-trained models becomes more prevalent in Natural Language Processing (NLP),
operating these large models in on-the-edge and/or under constrained computational training or inference budgets
remains challenging. In this work, we propose a method to pre-train a smaller general-purpose language representation
model, called DistilBERT, which can then be fine-tuned with good performances on a wide range of tasks like its larger
counterparts. While most prior work investigated the use of distillation for building task-specific models, we leverage
knowledge distillation during the pretraining phase and show that it is possible to reduce the size of a BERT model by
40%, while retaining 97% of its language understanding capabilities and being 60% faster. To leverage the inductive
biases learned by larger models during pretraining, we introduce a triple loss combining language modeling,
distillation and cosine-distance losses. Our smaller, faster and lighter model is cheaper to pre-train and we
demonstrate its capabilities for on-device computations in a proof-of-concept experiment and a comparative on-device
study.*
Tips:
- DistilBERT doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just
separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`).
- DistilBERT doesn't have options to select the input positions (`position_ids` input). This could be added if
necessary though, just let us know if you need this option.
- Same as BERT but smaller. Trained by distillation of the pretrained BERT model, meaning it’s been trained to predict the same probabilities as the larger model. The actual objective is a combination of:
* finding the same probabilities as the teacher model
* predicting the masked tokens correctly (but no next-sentence objective)
* a cosine similarity between the hidden states of the student and the teacher model
This model was contributed by [victorsanh](https://huggingface.co/victorsanh). This model jax version was
contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DistilBERT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-classification"/>
- A blog post on [Getting Started with Sentiment Analysis using Python](https://huggingface.co/blog/sentiment-analysis-python) with DistilBERT.
- A blog post on how to [train DistilBERT with Blurr for sequence classification](https://huggingface.co/blog/fastai).
- A blog post on how to use [Ray to tune DistilBERT hyperparameters](https://huggingface.co/blog/ray-tune).
- A blog post on how to [train DistilBERT with Hugging Face and Amazon SageMaker](https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face).
- A notebook on how to [finetune DistilBERT for multi-label classification](https://colab.research.google.com/github/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb). 🌎
- A notebook on how to [finetune DistilBERT for multiclass classification with PyTorch](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multiclass_classification.ipynb). 🌎
- A notebook on how to [finetune DistilBERT for text classification in TensorFlow](https://colab.research.google.com/github/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb). 🌎
- [`DistilBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb).
- [`TFDistilBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
- [`FlaxDistilBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb).
- [Text classification task guide](../tasks/sequence_classification)
<PipelineTag pipeline="token-classification"/>
- [`DistilBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb).
- [`TFDistilBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
- [`FlaxDistilBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification).
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the πŸ€— Hugging Face Course.
- [Token classification task guide](../tasks/token_classification)
<PipelineTag pipeline="fill-mask"/>
- [`DistilBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFDistilBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [`FlaxDistilBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb).
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the πŸ€— Hugging Face Course.
- [Masked language modeling task guide](../tasks/masked_language_modeling)
<PipelineTag pipeline="question-answering"/>
- [`DistilBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb).
- [`TFDistilBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
- [`FlaxDistilBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering).
- [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the πŸ€— Hugging Face Course.
- [Question answering task guide](../tasks/question_answering)
**Multiple choice**
- [`DistilBertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb).
- [`TFDistilBertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb).
- [Multiple choice task guide](../tasks/multiple_choice)
βš—οΈ Optimization
- A blog post on how to [quantize DistilBERT with πŸ€— Optimum and Intel](https://huggingface.co/blog/intel).
- A blog post on how [Optimizing Transformers for GPUs with πŸ€— Optimum](https://www.philschmid.de/optimizing-transformers-with-optimum-gpu).
- A blog post on [Optimizing Transformers with Hugging Face Optimum](https://www.philschmid.de/optimizing-transformers-with-optimum).
⚑️ Inference
- A blog post on how to [Accelerate BERT inference with Hugging Face Transformers and AWS Inferentia](https://huggingface.co/blog/bert-inferentia-sagemaker) with DistilBERT.
- A blog post on [Serverless Inference with Hugging Face's Transformers, DistilBERT and Amazon SageMaker](https://www.philschmid.de/sagemaker-serverless-huggingface-distilbert).
πŸš€ Deploy
- A blog post on how to [deploy DistilBERT on Google Cloud](https://huggingface.co/blog/how-to-deploy-a-pipeline-to-google-clouds).
- A blog post on how to [deploy DistilBERT with Amazon SageMaker](https://huggingface.co/blog/deploy-hugging-face-models-easily-with-amazon-sagemaker).
- A blog post on how to [Deploy BERT with Hugging Face Transformers, Amazon SageMaker and Terraform module](https://www.philschmid.de/terraform-huggingface-amazon-sagemaker).
## DistilBertConfig
[[autodoc]] DistilBertConfig
## DistilBertTokenizer
[[autodoc]] DistilBertTokenizer
## DistilBertTokenizerFast
[[autodoc]] DistilBertTokenizerFast
## DistilBertModel
[[autodoc]] DistilBertModel
- forward
## DistilBertForMaskedLM
[[autodoc]] DistilBertForMaskedLM
- forward
## DistilBertForSequenceClassification
[[autodoc]] DistilBertForSequenceClassification
- forward
## DistilBertForMultipleChoice
[[autodoc]] DistilBertForMultipleChoice
- forward
## DistilBertForTokenClassification
[[autodoc]] DistilBertForTokenClassification
- forward
## DistilBertForQuestionAnswering
[[autodoc]] DistilBertForQuestionAnswering
- forward
## TFDistilBertModel
[[autodoc]] TFDistilBertModel
- call
## TFDistilBertForMaskedLM
[[autodoc]] TFDistilBertForMaskedLM
- call
## TFDistilBertForSequenceClassification
[[autodoc]] TFDistilBertForSequenceClassification
- call
## TFDistilBertForMultipleChoice
[[autodoc]] TFDistilBertForMultipleChoice
- call
## TFDistilBertForTokenClassification
[[autodoc]] TFDistilBertForTokenClassification
- call
## TFDistilBertForQuestionAnswering
[[autodoc]] TFDistilBertForQuestionAnswering
- call
## FlaxDistilBertModel
[[autodoc]] FlaxDistilBertModel
- __call__
## FlaxDistilBertForMaskedLM
[[autodoc]] FlaxDistilBertForMaskedLM
- __call__
## FlaxDistilBertForSequenceClassification
[[autodoc]] FlaxDistilBertForSequenceClassification
- __call__
## FlaxDistilBertForMultipleChoice
[[autodoc]] FlaxDistilBertForMultipleChoice
- __call__
## FlaxDistilBertForTokenClassification
[[autodoc]] FlaxDistilBertForTokenClassification
- __call__
## FlaxDistilBertForQuestionAnswering
[[autodoc]] FlaxDistilBertForQuestionAnswering
- __call__