|
<!--Copyright 2022 The HuggingFace Team. All rights reserved. |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with |
|
the License. You may obtain a copy of the License at |
|
|
|
http: |
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on |
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the |
|
specific language governing permissions and limitations under the License. |
|
--> |
|
|
|
# Image classification |
|
|
|
[[open-in-colab]] |
|
|
|
<Youtube id="tjAIM7BOYhw"/> |
|
|
|
Image classification assigns a label or class to an image. Unlike text or audio classification, the inputs are the |
|
pixel values that comprise an image. There are many applications for image classification, such as detecting damage |
|
after a natural disaster, monitoring crop health, or helping screen medical images for signs of disease. |
|
|
|
This guide illustrates how to: |
|
|
|
1. Fine-tune [ViT](model_doc/vit) on the [Food-101](https://huggingface.co/datasets/food101) dataset to classify a food item in an image. |
|
2. Use your fine-tuned model for inference. |
|
|
|
<Tip> |
|
The task illustrated in this tutorial is supported by the following model architectures: |
|
|
|
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!--> |
|
|
|
[BEiT](../model_doc/beit), [BiT](../model_doc/bit), [ConvNeXT](../model_doc/convnext), [ConvNeXTV2](../model_doc/convnextv2), [CvT](../model_doc/cvt), [Data2VecVision](../model_doc/data2vec-vision), [DeiT](../model_doc/deit), [DiNAT](../model_doc/dinat), [EfficientFormer](../model_doc/efficientformer), [EfficientNet](../model_doc/efficientnet), [ImageGPT](../model_doc/imagegpt), [LeViT](../model_doc/levit), [MobileNetV1](../model_doc/mobilenet_v1), [MobileNetV2](../model_doc/mobilenet_v2), [MobileViT](../model_doc/mobilevit), [NAT](../model_doc/nat), [Perceiver](../model_doc/perceiver), [PoolFormer](../model_doc/poolformer), [RegNet](../model_doc/regnet), [ResNet](../model_doc/resnet), [SegFormer](../model_doc/segformer), [Swin Transformer](../model_doc/swin), [Swin Transformer V2](../model_doc/swinv2), [VAN](../model_doc/van), [ViT](../model_doc/vit), [ViT Hybrid](../model_doc/vit_hybrid), [ViTMSN](../model_doc/vit_msn) |
|
<!--End of the generated tip--> |
|
|
|
</Tip> |
|
|
|
Before you begin, make sure you have all the necessary libraries installed: |
|
|
|
```bash |
|
pip install transformers datasets evaluate |
|
``` |
|
|
|
We encourage you to log in to your Hugging Face account to upload and share your model with the community. When prompted, enter your token to log in: |
|
|
|
```py |
|
>>> from huggingface_hub import notebook_login |
|
|
|
>>> notebook_login() |
|
``` |
|
|
|
## Load Food-101 dataset |
|
|
|
Start by loading a smaller subset of the Food-101 dataset from the π€ Datasets library. This will give you a chance to |
|
experiment and make sure everything works before spending more time training on the full dataset. |
|
|
|
```py |
|
>>> from datasets import load_dataset |
|
|
|
>>> food = load_dataset("food101", split="train[:5000]") |
|
``` |
|
|
|
Split the dataset's `train` split into a train and test set with the [`~datasets.Dataset.train_test_split`] method: |
|
|
|
```py |
|
>>> food = food.train_test_split(test_size=0.2) |
|
``` |
|
|
|
Then take a look at an example: |
|
|
|
```py |
|
>>> food["train"][0] |
|
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x512 at 0x7F52AFC8AC50>, |
|
'label': 79} |
|
``` |
|
|
|
Each example in the dataset has two fields: |
|
|
|
- `image`: a PIL image of the food item |
|
- `label`: the label class of the food item |
|
|
|
To make it easier for the model to get the label name from the label id, create a dictionary that maps the label name |
|
to an integer and vice versa: |
|
|
|
```py |
|
>>> labels = food["train"].features["label"].names |
|
>>> label2id, id2label = dict(), dict() |
|
>>> for i, label in enumerate(labels): |
|
... label2id[label] = str(i) |
|
... id2label[str(i)] = label |
|
``` |
|
|
|
Now you can convert the label id to a label name: |
|
|
|
```py |
|
>>> id2label[str(79)] |
|
'prime_rib' |
|
``` |
|
|
|
## Preprocess |
|
|
|
The next step is to load a ViT image processor to process the image into a tensor: |
|
|
|
```py |
|
>>> from transformers import AutoImageProcessor |
|
|
|
>>> checkpoint = "google/vit-base-patch16-224-in21k" |
|
>>> image_processor = AutoImageProcessor.from_pretrained(checkpoint) |
|
``` |
|
|
|
<frameworkcontent> |
|
<pt> |
|
Apply some image transformations to the images to make the model more robust against overfitting. Here you'll use torchvision's [`transforms`](https://pytorch.org/vision/stable/transforms.html) module, but you can also use any image library you like. |
|
|
|
Crop a random part of the image, resize it, and normalize it with the image mean and standard deviation: |
|
|
|
```py |
|
>>> from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor |
|
|
|
>>> normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std) |
|
>>> size = ( |
|
... image_processor.size["shortest_edge"] |
|
... if "shortest_edge" in image_processor.size |
|
... else (image_processor.size["height"], image_processor.size["width"]) |
|
... ) |
|
>>> _transforms = Compose([RandomResizedCrop(size), ToTensor(), normalize]) |
|
``` |
|
|
|
Then create a preprocessing function to apply the transforms and return the `pixel_values` - the inputs to the model - of the image: |
|
|
|
```py |
|
>>> def transforms(examples): |
|
... examples["pixel_values"] = [_transforms(img.convert("RGB")) for img in examples["image"]] |
|
... del examples["image"] |
|
... return examples |
|
``` |
|
|
|
To apply the preprocessing function over the entire dataset, use π€ Datasets [`~datasets.Dataset.with_transform`] method. The transforms are applied on the fly when you load an element of the dataset: |
|
|
|
```py |
|
>>> food = food.with_transform(transforms) |
|
``` |
|
|
|
Now create a batch of examples using [`DefaultDataCollator`]. Unlike other data collators in π€ Transformers, the `DefaultDataCollator` does not apply additional preprocessing such as padding. |
|
|
|
```py |
|
>>> from transformers import DefaultDataCollator |
|
|
|
>>> data_collator = DefaultDataCollator() |
|
``` |
|
</pt> |
|
</frameworkcontent> |
|
|
|
|
|
<frameworkcontent> |
|
<tf> |
|
|
|
To avoid overfitting and to make the model more robust, add some data augmentation to the training part of the dataset. |
|
Here we use Keras preprocessing layers to define the transformations for the training data (includes data augmentation), |
|
and transformations for the validation data (only center cropping, resizing and normalizing). You can use `tf.image`or |
|
any other library you prefer. |
|
|
|
```py |
|
>>> from tensorflow import keras |
|
>>> from tensorflow.keras import layers |
|
|
|
>>> size = (image_processor.size["height"], image_processor.size["width"]) |
|
|
|
>>> train_data_augmentation = keras.Sequential( |
|
... [ |
|
... layers.RandomCrop(size[0], size[1]), |
|
... layers.Rescaling(scale=1.0 / 127.5, offset=-1), |
|
... layers.RandomFlip("horizontal"), |
|
... layers.RandomRotation(factor=0.02), |
|
... layers.RandomZoom(height_factor=0.2, width_factor=0.2), |
|
... ], |
|
... name="train_data_augmentation", |
|
... ) |
|
|
|
>>> val_data_augmentation = keras.Sequential( |
|
... [ |
|
... layers.CenterCrop(size[0], size[1]), |
|
... layers.Rescaling(scale=1.0 / 127.5, offset=-1), |
|
... ], |
|
... name="val_data_augmentation", |
|
... ) |
|
``` |
|
|
|
Next, create functions to apply appropriate transformations to a batch of images, instead of one image at a time. |
|
|
|
```py |
|
>>> import numpy as np |
|
>>> import tensorflow as tf |
|
>>> from PIL import Image |
|
|
|
|
|
>>> def convert_to_tf_tensor(image: Image): |
|
... np_image = np.array(image) |
|
... tf_image = tf.convert_to_tensor(np_image) |
|
... # `expand_dims()` is used to add a batch dimension since |
|
... # the TF augmentation layers operates on batched inputs. |
|
... return tf.expand_dims(tf_image, 0) |
|
|
|
|
|
>>> def preprocess_train(example_batch): |
|
... """Apply train_transforms across a batch.""" |
|
... images = [ |
|
... train_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"] |
|
... ] |
|
... example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images] |
|
... return example_batch |
|
|
|
|
|
... def preprocess_val(example_batch): |
|
... """Apply val_transforms across a batch.""" |
|
... images = [ |
|
... val_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"] |
|
... ] |
|
... example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images] |
|
... return example_batch |
|
``` |
|
|
|
Use π€ Datasets [`~datasets.Dataset.set_transform`] to apply the transformations on the fly: |
|
|
|
```py |
|
food["train"].set_transform(preprocess_train) |
|
food["test"].set_transform(preprocess_val) |
|
``` |
|
|
|
As a final preprocessing step, create a batch of examples using `DefaultDataCollator`. Unlike other data collators in π€ Transformers, the |
|
`DefaultDataCollator` does not apply additional preprocessing, such as padding. |
|
|
|
```py |
|
>>> from transformers import DefaultDataCollator |
|
|
|
>>> data_collator = DefaultDataCollator(return_tensors="tf") |
|
``` |
|
</tf> |
|
</frameworkcontent> |
|
|
|
## Evaluate |
|
|
|
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load an |
|
evaluation method with the π€ [Evaluate](https: |
|
the [accuracy](https: |
|
|
|
```py |
|
>>> import evaluate |
|
|
|
>>> accuracy = evaluate.load("accuracy") |
|
``` |
|
|
|
Then create a function that passes your predictions and labels to [`~evaluate.EvaluationModule.compute`] to calculate the accuracy: |
|
|
|
```py |
|
>>> import numpy as np |
|
|
|
|
|
>>> def compute_metrics(eval_pred): |
|
... predictions, labels = eval_pred |
|
... predictions = np.argmax(predictions, axis=1) |
|
... return accuracy.compute(predictions=predictions, references=labels) |
|
``` |
|
|
|
Your `compute_metrics` function is ready to go now, and you'll return to it when you set up your training. |
|
|
|
## Train |
|
|
|
<frameworkcontent> |
|
<pt> |
|
<Tip> |
|
|
|
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)! |
|
|
|
</Tip> |
|
|
|
You're ready to start training your model now! Load ViT with [`AutoModelForImageClassification`]. Specify the number of labels along with the number of expected labels, and the label mappings: |
|
|
|
```py |
|
>>> from transformers import AutoModelForImageClassification, TrainingArguments, Trainer |
|
|
|
>>> model = AutoModelForImageClassification.from_pretrained( |
|
... checkpoint, |
|
... num_labels=len(labels), |
|
... id2label=id2label, |
|
... label2id=label2id, |
|
... ) |
|
``` |
|
|
|
At this point, only three steps remain: |
|
|
|
1. Define your training hyperparameters in [`TrainingArguments`]. It is important you don't remove unused columns because this'll drop the `image` column. Without the `image` column, you can't create `pixel_values`. Set `remove_unused_columns=False` to prevent this behavior! The only other required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the accuracy and save the training checkpoint. |
|
2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function. |
|
3. Call [`~Trainer.train`] to finetune your model. |
|
|
|
```py |
|
>>> training_args = TrainingArguments( |
|
... output_dir="my_awesome_food_model", |
|
... remove_unused_columns=False, |
|
... evaluation_strategy="epoch", |
|
... save_strategy="epoch", |
|
... learning_rate=5e-5, |
|
... per_device_train_batch_size=16, |
|
... gradient_accumulation_steps=4, |
|
... per_device_eval_batch_size=16, |
|
... num_train_epochs=3, |
|
... warmup_ratio=0.1, |
|
... logging_steps=10, |
|
... load_best_model_at_end=True, |
|
... metric_for_best_model="accuracy", |
|
... push_to_hub=True, |
|
... ) |
|
|
|
>>> trainer = Trainer( |
|
... model=model, |
|
... args=training_args, |
|
... data_collator=data_collator, |
|
... train_dataset=food["train"], |
|
... eval_dataset=food["test"], |
|
... tokenizer=image_processor, |
|
... compute_metrics=compute_metrics, |
|
... ) |
|
|
|
>>> trainer.train() |
|
``` |
|
|
|
Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model: |
|
|
|
```py |
|
>>> trainer.push_to_hub() |
|
``` |
|
</pt> |
|
</frameworkcontent> |
|
|
|
<frameworkcontent> |
|
<tf> |
|
|
|
<Tip> |
|
|
|
If you are unfamiliar with fine-tuning a model with Keras, check out the [basic tutorial](./training#train-a-tensorflow-model-with-keras) first! |
|
|
|
</Tip> |
|
|
|
To fine-tune a model in TensorFlow, follow these steps: |
|
1. Define the training hyperparameters, and set up an optimizer and a learning rate schedule. |
|
2. Instantiate a pre-treined model. |
|
3. Convert a π€ Dataset to a `tf.data.Dataset`. |
|
4. Compile your model. |
|
5. Add callbacks and use the `fit()` method to run the training. |
|
6. Upload your model to π€ Hub to share with the community. |
|
|
|
Start by defining the hyperparameters, optimizer and learning rate schedule: |
|
|
|
```py |
|
>>> from transformers import create_optimizer |
|
|
|
>>> batch_size = 16 |
|
>>> num_epochs = 5 |
|
>>> num_train_steps = len(food["train"]) * num_epochs |
|
>>> learning_rate = 3e-5 |
|
>>> weight_decay_rate = 0.01 |
|
|
|
>>> optimizer, lr_schedule = create_optimizer( |
|
... init_lr=learning_rate, |
|
... num_train_steps=num_train_steps, |
|
... weight_decay_rate=weight_decay_rate, |
|
... num_warmup_steps=0, |
|
... ) |
|
``` |
|
|
|
Then, load ViT with [`TFAutoModelForImageClassification`] along with the label mappings: |
|
|
|
```py |
|
>>> from transformers import TFAutoModelForImageClassification |
|
|
|
>>> model = TFAutoModelForImageClassification.from_pretrained( |
|
... checkpoint, |
|
... id2label=id2label, |
|
... label2id=label2id, |
|
... ) |
|
``` |
|
|
|
Convert your datasets to the `tf.data.Dataset` format using the [`~datasets.Dataset.to_tf_dataset`] and your `data_collator`: |
|
|
|
```py |
|
>>> # converting our train dataset to tf.data.Dataset |
|
>>> tf_train_dataset = food["train"].to_tf_dataset( |
|
... columns=["pixel_values"], label_cols=["label"], shuffle=True, batch_size=batch_size, collate_fn=data_collator |
|
... ) |
|
|
|
>>> # converting our test dataset to tf.data.Dataset |
|
>>> tf_eval_dataset = food["test"].to_tf_dataset( |
|
... columns=["pixel_values"], label_cols=["label"], shuffle=True, batch_size=batch_size, collate_fn=data_collator |
|
... ) |
|
``` |
|
|
|
Configure the model for training with `compile()`: |
|
|
|
```py |
|
>>> from tensorflow.keras.losses import SparseCategoricalCrossentropy |
|
|
|
>>> loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) |
|
>>> model.compile(optimizer=optimizer, loss=loss) |
|
``` |
|
|
|
To compute the accuracy from the predictions and push your model to the π€ Hub, use [Keras callbacks](../main_classes/keras_callbacks). |
|
Pass your `compute_metrics` function to [KerasMetricCallback](../main_classes/keras_callbacks#transformers.KerasMetricCallback), |
|
and use the [PushToHubCallback](../main_classes/keras_callbacks#transformers.PushToHubCallback) to upload the model: |
|
|
|
```py |
|
>>> from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback |
|
|
|
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_eval_dataset) |
|
>>> push_to_hub_callback = PushToHubCallback( |
|
... output_dir="food_classifier", |
|
... tokenizer=image_processor, |
|
... save_strategy="no", |
|
... ) |
|
>>> callbacks = [metric_callback, push_to_hub_callback] |
|
``` |
|
|
|
Finally, you are ready to train your model! Call `fit()` with your training and validation datasets, the number of epochs, |
|
and your callbacks to fine-tune the model: |
|
|
|
```py |
|
>>> model.fit(tf_train_dataset, validation_data=tf_eval_dataset, epochs=num_epochs, callbacks=callbacks) |
|
Epoch 1/5 |
|
250/250 [==============================] - 313s 1s/step - loss: 2.5623 - val_loss: 1.4161 - accuracy: 0.9290 |
|
Epoch 2/5 |
|
250/250 [==============================] - 265s 1s/step - loss: 0.9181 - val_loss: 0.6808 - accuracy: 0.9690 |
|
Epoch 3/5 |
|
250/250 [==============================] - 252s 1s/step - loss: 0.3910 - val_loss: 0.4303 - accuracy: 0.9820 |
|
Epoch 4/5 |
|
250/250 [==============================] - 251s 1s/step - loss: 0.2028 - val_loss: 0.3191 - accuracy: 0.9900 |
|
Epoch 5/5 |
|
250/250 [==============================] - 238s 949ms/step - loss: 0.1232 - val_loss: 0.3259 - accuracy: 0.9890 |
|
``` |
|
|
|
Congratulations! You have fine-tuned your model and shared it on the π€ Hub. You can now use it for inference! |
|
</tf> |
|
</frameworkcontent> |
|
|
|
|
|
<Tip> |
|
|
|
For a more in-depth example of how to finetune a model for image classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). |
|
|
|
</Tip> |
|
|
|
## Inference |
|
|
|
Great, now that you've fine-tuned a model, you can use it for inference! |
|
|
|
Load an image you'd like to run inference on: |
|
|
|
```py |
|
>>> ds = load_dataset("food101", split="validation[:10]") |
|
>>> image = ds["image"][0] |
|
``` |
|
|
|
<div class="flex justify-center"> |
|
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png" alt="image of beignets"/> |
|
</div> |
|
|
|
The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for image classification with your model, and pass your image to it: |
|
|
|
```py |
|
>>> from transformers import pipeline |
|
|
|
>>> classifier = pipeline("image-classification", model="my_awesome_food_model") |
|
>>> classifier(image) |
|
[{'score': 0.31856709718704224, 'label': 'beignets'}, |
|
{'score': 0.015232225880026817, 'label': 'bruschetta'}, |
|
{'score': 0.01519392803311348, 'label': 'chicken_wings'}, |
|
{'score': 0.013022331520915031, 'label': 'pork_chop'}, |
|
{'score': 0.012728818692266941, 'label': 'prime_rib'}] |
|
``` |
|
|
|
You can also manually replicate the results of the `pipeline` if you'd like: |
|
|
|
<frameworkcontent> |
|
<pt> |
|
Load an image processor to preprocess the image and return the `input` as PyTorch tensors: |
|
|
|
```py |
|
>>> from transformers import AutoImageProcessor |
|
>>> import torch |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("my_awesome_food_model") |
|
>>> inputs = image_processor(image, return_tensors="pt") |
|
``` |
|
|
|
Pass your inputs to the model and return the logits: |
|
|
|
```py |
|
>>> from transformers import AutoModelForImageClassification |
|
|
|
>>> model = AutoModelForImageClassification.from_pretrained("my_awesome_food_model") |
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
``` |
|
|
|
Get the predicted label with the highest probability, and use the model's `id2label` mapping to convert it to a label: |
|
|
|
```py |
|
>>> predicted_label = logits.argmax(-1).item() |
|
>>> model.config.id2label[predicted_label] |
|
'beignets' |
|
``` |
|
</pt> |
|
</frameworkcontent> |
|
|
|
<frameworkcontent> |
|
<tf> |
|
Load an image processor to preprocess the image and return the `input` as TensorFlow tensors: |
|
|
|
```py |
|
>>> from transformers import AutoImageProcessor |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("MariaK/food_classifier") |
|
>>> inputs = image_processor(image, return_tensors="tf") |
|
``` |
|
|
|
Pass your inputs to the model and return the logits: |
|
|
|
```py |
|
>>> from transformers import TFAutoModelForImageClassification |
|
|
|
>>> model = TFAutoModelForImageClassification.from_pretrained("MariaK/food_classifier") |
|
>>> logits = model(**inputs).logits |
|
``` |
|
|
|
Get the predicted label with the highest probability, and use the model's `id2label` mapping to convert it to a label: |
|
|
|
```py |
|
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0]) |
|
>>> model.config.id2label[predicted_class_id] |
|
'beignets' |
|
``` |
|
|
|
</tf> |
|
</frameworkcontent> |
|
|