Spaces:
Runtime error
Runtime error
Songwei Ge
commited on
Commit
·
9d776c8
1
Parent(s):
3430584
demo
Browse files- app.py +2 -2
- models/region_diffusion.py +0 -5
app.py
CHANGED
@@ -28,7 +28,7 @@ def main():
|
|
28 |
model = RegionDiffusion(device)
|
29 |
|
30 |
def generate(
|
31 |
-
text_input: str,
|
32 |
negative_text: str,
|
33 |
height: int,
|
34 |
width: int,
|
@@ -44,7 +44,7 @@ def main():
|
|
44 |
# parse json to span attributes
|
45 |
base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\
|
46 |
color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json(
|
47 |
-
text_input)
|
48 |
|
49 |
# create control input for region diffusion
|
50 |
region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input(
|
|
|
28 |
model = RegionDiffusion(device)
|
29 |
|
30 |
def generate(
|
31 |
+
json.loads(text_input): str,
|
32 |
negative_text: str,
|
33 |
height: int,
|
34 |
width: int,
|
|
|
44 |
# parse json to span attributes
|
45 |
base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\
|
46 |
color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json(
|
47 |
+
json.loads(text_input))
|
48 |
|
49 |
# create control input for region diffusion
|
50 |
region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input(
|
models/region_diffusion.py
CHANGED
@@ -22,17 +22,12 @@ class RegionDiffusion(nn.Module):
|
|
22 |
print(f'[INFO] loading stable diffusion...')
|
23 |
model_id = 'runwayml/stable-diffusion-v1-5'
|
24 |
|
25 |
-
# 1. Load the autoencoder model which will be used to decode the latents into image space.
|
26 |
self.vae = AutoencoderKL.from_pretrained(
|
27 |
model_id, subfolder="vae").to(self.device)
|
28 |
-
|
29 |
-
# 2. Load the tokenizer and text encoder to tokenize and encode the text.
|
30 |
self.tokenizer = CLIPTokenizer.from_pretrained(
|
31 |
model_id, subfolder='tokenizer')
|
32 |
self.text_encoder = CLIPTextModel.from_pretrained(
|
33 |
model_id, subfolder='text_encoder').to(self.device)
|
34 |
-
|
35 |
-
# 3. The UNet model for generating the latents.
|
36 |
self.unet = UNet2DConditionModel.from_pretrained(
|
37 |
model_id, subfolder="unet").to(self.device)
|
38 |
|
|
|
22 |
print(f'[INFO] loading stable diffusion...')
|
23 |
model_id = 'runwayml/stable-diffusion-v1-5'
|
24 |
|
|
|
25 |
self.vae = AutoencoderKL.from_pretrained(
|
26 |
model_id, subfolder="vae").to(self.device)
|
|
|
|
|
27 |
self.tokenizer = CLIPTokenizer.from_pretrained(
|
28 |
model_id, subfolder='tokenizer')
|
29 |
self.text_encoder = CLIPTextModel.from_pretrained(
|
30 |
model_id, subfolder='text_encoder').to(self.device)
|
|
|
|
|
31 |
self.unet = UNet2DConditionModel.from_pretrained(
|
32 |
model_id, subfolder="unet").to(self.device)
|
33 |
|