Spaces:
Runtime error
Runtime error
Songwei Ge
commited on
Commit
·
d0745b6
1
Parent(s):
51be712
demo
Browse files- app.py +1 -1
- models/__pycache__/region_diffusion.cpython-38.pyc +0 -0
- utils/attention_utils.py +1 -1
- utils/richtext_utils.py +8 -8
app.py
CHANGED
@@ -44,7 +44,7 @@ def main():
|
|
44 |
# parse json to span attributes
|
45 |
base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\
|
46 |
color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json(
|
47 |
-
json.loads(text_input))
|
48 |
|
49 |
# create control input for region diffusion
|
50 |
region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input(
|
|
|
44 |
# parse json to span attributes
|
45 |
base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\
|
46 |
color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json(
|
47 |
+
json.loads(text_input), device)
|
48 |
|
49 |
# create control input for region diffusion
|
50 |
region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input(
|
models/__pycache__/region_diffusion.cpython-38.pyc
CHANGED
Binary files a/models/__pycache__/region_diffusion.cpython-38.pyc and b/models/__pycache__/region_diffusion.cpython-38.pyc differ
|
|
utils/attention_utils.py
CHANGED
@@ -184,5 +184,5 @@ def get_token_maps(attention_maps, save_dir, width, height, obj_tokens, seed=0,
|
|
184 |
token_maps_vis = plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized],
|
185 |
obj_tokens, save_dir, seed, tokens_vis)
|
186 |
attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat(
|
187 |
-
[1, 4, 1, 1]).
|
188 |
return attention_maps_averaged_normalized, token_maps_vis
|
|
|
184 |
token_maps_vis = plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized],
|
185 |
obj_tokens, save_dir, seed, tokens_vis)
|
186 |
attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat(
|
187 |
+
[1, 4, 1, 1]).to(attention_maps_averaged_sum.device) for attn_mask in attention_maps_averaged_normalized]
|
188 |
return attention_maps_averaged_normalized, token_maps_vis
|
utils/richtext_utils.py
CHANGED
@@ -27,7 +27,7 @@ def seed_everything(seed):
|
|
27 |
torch.cuda.manual_seed(seed)
|
28 |
|
29 |
|
30 |
-
def hex_to_rgb(hex_string, return_nearest_color=False):
|
31 |
r"""
|
32 |
Covert Hex triplet to RGB triplet.
|
33 |
"""
|
@@ -40,8 +40,8 @@ def hex_to_rgb(hex_string, return_nearest_color=False):
|
|
40 |
rgb = torch.FloatTensor((red, green, blue))[None, :, None, None]/255.
|
41 |
if return_nearest_color:
|
42 |
nearest_color = find_nearest_color(rgb)
|
43 |
-
return rgb.
|
44 |
-
return rgb.
|
45 |
|
46 |
|
47 |
def find_nearest_color(rgb):
|
@@ -56,7 +56,7 @@ def find_nearest_color(rgb):
|
|
56 |
return nearest_color
|
57 |
|
58 |
|
59 |
-
def font2style(font):
|
60 |
r"""
|
61 |
Convert the font name to the style name.
|
62 |
"""
|
@@ -71,7 +71,7 @@ def font2style(font):
|
|
71 |
'Akronim': 'Abstract Cubism, Pablo Picasso', }[font]
|
72 |
|
73 |
|
74 |
-
def parse_json(json_str):
|
75 |
r"""
|
76 |
Convert the JSON string to attributes.
|
77 |
"""
|
@@ -121,7 +121,7 @@ def parse_json(json_str):
|
|
121 |
if 'color' in span['attributes']:
|
122 |
use_grad_guidance = True
|
123 |
color_rgb, nearest_color = hex_to_rgb(
|
124 |
-
span['attributes']['color'], True)
|
125 |
if prev_color_rgb == color_rgb:
|
126 |
prev_text_prompt = color_text_prompts[-1]
|
127 |
color_text_prompts[-1] = prev_text_prompt + \
|
@@ -197,8 +197,8 @@ def get_attention_control_input(model, base_tokens, size_text_prompts_and_sizes)
|
|
197 |
word_pos.append(base_tokens.index(size_token)+1)
|
198 |
font_sizes.append(font_size)
|
199 |
if len(word_pos) > 0:
|
200 |
-
word_pos = torch.LongTensor(word_pos).
|
201 |
-
font_sizes = torch.FloatTensor(font_sizes).
|
202 |
else:
|
203 |
word_pos = None
|
204 |
font_sizes = None
|
|
|
27 |
torch.cuda.manual_seed(seed)
|
28 |
|
29 |
|
30 |
+
def hex_to_rgb(hex_string, return_nearest_color=False, device='cuda'):
|
31 |
r"""
|
32 |
Covert Hex triplet to RGB triplet.
|
33 |
"""
|
|
|
40 |
rgb = torch.FloatTensor((red, green, blue))[None, :, None, None]/255.
|
41 |
if return_nearest_color:
|
42 |
nearest_color = find_nearest_color(rgb)
|
43 |
+
return rgb.to(device), nearest_color
|
44 |
+
return rgb.to(device)
|
45 |
|
46 |
|
47 |
def find_nearest_color(rgb):
|
|
|
56 |
return nearest_color
|
57 |
|
58 |
|
59 |
+
def font2style(font, device='cuda'):
|
60 |
r"""
|
61 |
Convert the font name to the style name.
|
62 |
"""
|
|
|
71 |
'Akronim': 'Abstract Cubism, Pablo Picasso', }[font]
|
72 |
|
73 |
|
74 |
+
def parse_json(json_str, device):
|
75 |
r"""
|
76 |
Convert the JSON string to attributes.
|
77 |
"""
|
|
|
121 |
if 'color' in span['attributes']:
|
122 |
use_grad_guidance = True
|
123 |
color_rgb, nearest_color = hex_to_rgb(
|
124 |
+
span['attributes']['color'], True, device=device)
|
125 |
if prev_color_rgb == color_rgb:
|
126 |
prev_text_prompt = color_text_prompts[-1]
|
127 |
color_text_prompts[-1] = prev_text_prompt + \
|
|
|
197 |
word_pos.append(base_tokens.index(size_token)+1)
|
198 |
font_sizes.append(font_size)
|
199 |
if len(word_pos) > 0:
|
200 |
+
word_pos = torch.LongTensor(word_pos).to(model.device)
|
201 |
+
font_sizes = torch.FloatTensor(font_sizes).to(model.device)
|
202 |
else:
|
203 |
word_pos = None
|
204 |
font_sizes = None
|