Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import pandas as pd | |
import gradio as gr | |
# Initialize the sentiment analysis pipeline | |
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", framework="pt") | |
def analyze_csv(file_path): | |
# Read the CSV file | |
df = pd.read_csv(file_path) | |
# Ensure the CSV has a 'text' column | |
if 'text' not in df.columns: | |
return "Error: CSV must contain a 'text' column." | |
# Apply sentiment analysis on each text entry | |
results = df['text'].apply(lambda x: sentiment_pipeline(x)[0]) | |
df['sentiment'] = results.apply(lambda r: r['label']) | |
df['score'] = results.apply(lambda r: r['score']) | |
# Save output to a new CSV file | |
output_csv_path = "output.csv" | |
df.to_csv(output_csv_path, index=False) | |
return output_csv_path # Return path to the new CSV | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=analyze_csv, | |
inputs=gr.File(label="Upload CSV File", file_count="single", type="filepath"), | |
outputs=gr.File(label="Download CSV File"), | |
title="CSV Sentiment Analysis App", | |
description="Upload a CSV file with a 'text' column. The app will run sentiment analysis on each row and return a downloadable CSV with sentiment labels and scores." | |
) | |
if __name__ == "__main__": | |
iface.launch() |