soniakhamitkar's picture
Update app.py
f7d4c76 verified
raw
history blame
1.4 kB
from transformers import pipeline
import pandas as pd
import gradio as gr
# Initialize the sentiment analysis pipeline
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", framework="pt")
def analyze_csv(file_path):
# Read the CSV file
df = pd.read_csv(file_path)
# Ensure the CSV has a 'text' column
if 'text' not in df.columns:
return "Error: CSV must contain a 'text' column."
# Apply sentiment analysis on each text entry
results = df['text'].apply(lambda x: sentiment_pipeline(x)[0])
df['sentiment'] = results.apply(lambda r: r['label'])
df['score'] = results.apply(lambda r: r['score'])
# Return the DataFrame as a CSV string
return df.to_csv(index=False)
def gradio_analyze(file_obj):
# Get the path of the uploaded file and analyze it
file_path = file_obj.name
return analyze_csv(file_path)
# Define the Gradio interface
iface = gr.Interface(
fn=gradio_analyze,
inputs=gr.File(label="Upload CSV File", file_count="single", type="filepath"),
outputs=gr.Textbox(label="CSV with Sentiment Analysis"),
title="CSV Sentiment Analysis App",
description="Upload a CSV file with a 'text' column. The app will run sentiment analysis on each row and return the CSV with sentiment labels and scores."
)
if __name__ == "__main__":
iface.launch()