soniakhamitkar commited on
Commit
d7b6823
·
verified ·
1 Parent(s): 27f9d71

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import pipeline
2
+ import pandas as pd
3
+ import gradio as gr
4
+
5
+ # Initialize the sentiment analysis pipeline
6
+ sentiment_pipeline = pipeline("sentiment-analysis")
7
+
8
+ def analyze_csv(file_path):
9
+ # Read the CSV file
10
+ df = pd.read_csv(file_path)
11
+
12
+ # Ensure the CSV has a 'text' column
13
+ if 'text' not in df.columns:
14
+ return "Error: CSV must contain a 'text' column."
15
+
16
+ # Apply sentiment analysis on each text entry
17
+ results = df['text'].apply(lambda x: sentiment_pipeline(x)[0])
18
+ df['sentiment'] = results.apply(lambda r: r['label'])
19
+ df['score'] = results.apply(lambda r: r['score'])
20
+
21
+ # Return the DataFrame as a CSV string
22
+ return df.to_csv(index=False)
23
+
24
+ def gradio_analyze(file_obj):
25
+ # Get the path of the uploaded file and analyze it
26
+ file_path = file_obj.name
27
+ return analyze_csv(file_path)
28
+
29
+ # Define the Gradio interface
30
+ iface = gr.Interface(
31
+ fn=gradio_analyze,
32
+ inputs=gr.File(label="Upload CSV File", file_count="single", type="file"),
33
+ outputs=gr.Textbox(label="CSV with Sentiment Analysis"),
34
+ title="CSV Sentiment Analysis App",
35
+ description="Upload a CSV file with a 'text' column. The app will run sentiment analysis on each row and return the CSV with sentiment labels and scores."
36
+ )
37
+
38
+ if __name__ == "__main__":
39
+ iface.launch()