Spaces:
Running
Running
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import argparse
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from decord import cpu, VideoReader, bridge
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
|
8 |
+
MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
|
9 |
+
|
10 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
+
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
|
12 |
+
|
13 |
+
parser = argparse.ArgumentParser(description="CogVLM2 Video to Text")
|
14 |
+
parser.add_argument('--video', type=str, required=True, help="Path to the video file")
|
15 |
+
parser.add_argument('--quant', type=int, choices=[4, 8], help='Enable 4-bit or 8-bit precision loading', default=0)
|
16 |
+
args = parser.parse_args()
|
17 |
+
|
18 |
+
|
19 |
+
def load_video(video_path, strategy='chat'):
|
20 |
+
bridge.set_bridge('torch')
|
21 |
+
|
22 |
+
with open(video_path, 'rb') as f:
|
23 |
+
video_stream = f.read()
|
24 |
+
|
25 |
+
num_frames = 24
|
26 |
+
decord_vr = VideoReader(io.BytesIO(video_stream), ctx=cpu(0))
|
27 |
+
|
28 |
+
frame_id_list = None
|
29 |
+
total_frames = len(decord_vr)
|
30 |
+
|
31 |
+
if strategy == 'base':
|
32 |
+
clip_end_sec = 60
|
33 |
+
clip_start_sec = 0
|
34 |
+
start_frame = int(clip_start_sec * decord_vr.get_avg_fps())
|
35 |
+
end_frame = min(total_frames, int(clip_end_sec * decord_vr.get_avg_fps())) if clip_end_sec is not None else total_frames
|
36 |
+
frame_id_list = np.linspace(start_frame, end_frame - 1, num_frames, dtype=int)
|
37 |
+
|
38 |
+
elif strategy == 'chat':
|
39 |
+
timestamps = decord_vr.get_frame_timestamp(np.arange(total_frames))
|
40 |
+
timestamps = [i[0] for i in timestamps]
|
41 |
+
max_second = round(max(timestamps)) + 1
|
42 |
+
frame_id_list = []
|
43 |
+
|
44 |
+
for second in range(max_second):
|
45 |
+
closest_num = min(timestamps, key=lambda x: abs(x - second))
|
46 |
+
index = timestamps.index(closest_num)
|
47 |
+
frame_id_list.append(index)
|
48 |
+
if len(frame_id_list) >= num_frames:
|
49 |
+
break
|
50 |
+
|
51 |
+
video_data = decord_vr.get_batch(frame_id_list)
|
52 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
53 |
+
return video_data
|
54 |
+
|
55 |
+
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
57 |
+
MODEL_PATH,
|
58 |
+
trust_remote_code=True,
|
59 |
+
)
|
60 |
+
|
61 |
+
model = AutoModelForCausalLM.from_pretrained(
|
62 |
+
MODEL_PATH,
|
63 |
+
torch_dtype=TORCH_TYPE,
|
64 |
+
trust_remote_code=True
|
65 |
+
).eval().to(DEVICE)
|
66 |
+
|
67 |
+
|
68 |
+
def predict(video_path, temperature=0.1):
|
69 |
+
strategy = 'chat'
|
70 |
+
prompt = "Please describe this video in detail."
|
71 |
+
|
72 |
+
video_data = load_video(video_path, strategy=strategy)
|
73 |
+
|
74 |
+
history = []
|
75 |
+
inputs = model.build_conversation_input_ids(
|
76 |
+
tokenizer=tokenizer,
|
77 |
+
query=prompt,
|
78 |
+
images=[video_data],
|
79 |
+
history=history,
|
80 |
+
template_version=strategy
|
81 |
+
)
|
82 |
+
inputs = {
|
83 |
+
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
|
84 |
+
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
|
85 |
+
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
|
86 |
+
'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
|
87 |
+
}
|
88 |
+
gen_kwargs = {
|
89 |
+
"max_new_tokens": 2048,
|
90 |
+
"pad_token_id": 128002,
|
91 |
+
"top_k": 1,
|
92 |
+
"do_sample": False,
|
93 |
+
"top_p": 0.1,
|
94 |
+
"temperature": temperature,
|
95 |
+
}
|
96 |
+
with torch.no_grad():
|
97 |
+
outputs = model.generate(**inputs, **gen_kwargs)
|
98 |
+
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
99 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
100 |
+
return response
|
101 |
+
|
102 |
+
|
103 |
+
if __name__ == '__main__':
|
104 |
+
video_file = args.video
|
105 |
+
response_text = predict(video_file)
|
106 |
+
print("\nGenerated Text Description:\n")
|
107 |
+
print(response_text)
|