sonoisa commited on
Commit
dac253d
1 Parent(s): 4a3b992

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -194
app.py DELETED
@@ -1,194 +0,0 @@
1
- from __future__ import unicode_literals
2
- import re
3
- import unicodedata
4
- import torch
5
- import streamlit as st
6
- from transformers import T5ForConditionalGeneration, T5Tokenizer
7
-
8
-
9
- def load_model():
10
- # 学習済みモデルをHugging Face model hubからダウンロードする
11
- model_dir_name = "sonoisa/t5-qiita-title-generation"
12
-
13
- # トークナイザー(SentencePiece)
14
- tokenizer = T5Tokenizer.from_pretrained(model_dir_name, is_fast=True)
15
-
16
- # 学習済みモデル
17
- trained_model = T5ForConditionalGeneration.from_pretrained(model_dir_name)
18
-
19
- # GPUの利用有無
20
- USE_GPU = torch.cuda.is_available()
21
- if USE_GPU:
22
- trained_model.cuda()
23
-
24
- return trained_model, tokenizer
25
-
26
-
27
- def unicode_normalize(cls, s):
28
- pt = re.compile("([{}]+)".format(cls))
29
-
30
- def norm(c):
31
- return unicodedata.normalize("NFKC", c) if pt.match(c) else c
32
-
33
- s = "".join(norm(x) for x in re.split(pt, s))
34
- s = re.sub("-", "-", s)
35
- return s
36
-
37
-
38
- def remove_extra_spaces(s):
39
- s = re.sub("[  ]+", " ", s)
40
- blocks = "".join(
41
- (
42
- "\u4E00-\u9FFF", # CJK UNIFIED IDEOGRAPHS
43
- "\u3040-\u309F", # HIRAGANA
44
- "\u30A0-\u30FF", # KATAKANA
45
- "\u3000-\u303F", # CJK SYMBOLS AND PUNCTUATION
46
- "\uFF00-\uFFEF", # HALFWIDTH AND FULLWIDTH FORMS
47
- )
48
- )
49
- basic_latin = "\u0000-\u007F"
50
-
51
- def remove_space_between(cls1, cls2, s):
52
- p = re.compile("([{}]) ([{}])".format(cls1, cls2))
53
- while p.search(s):
54
- s = p.sub(r"\1\2", s)
55
- return s
56
-
57
- s = remove_space_between(blocks, blocks, s)
58
- s = remove_space_between(blocks, basic_latin, s)
59
- s = remove_space_between(basic_latin, blocks, s)
60
- return s
61
-
62
-
63
- def normalize_neologd(s):
64
- s = s.strip()
65
- s = unicode_normalize("0-9A-Za-z。-゚", s)
66
-
67
- def maketrans(f, t):
68
- return {ord(x): ord(y) for x, y in zip(f, t)}
69
-
70
- s = re.sub("[˗֊‐‑‒–⁃⁻₋−]+", "-", s) # normalize hyphens
71
- s = re.sub("[﹣-ー—―─━ー]+", "ー", s) # normalize choonpus
72
- s = re.sub("[~∼∾〜〰~]+", "〜", s) # normalize tildes (modified by Isao Sonobe)
73
- s = s.translate(
74
- maketrans(
75
- "!\"#$%&'()*+,-./:;<=>?@[¥]^_`{|}~。、・「」",
76
- "!”#$%&’()*+,-./:;<=>?@[¥]^_`{|}〜。、・「」",
77
- )
78
- )
79
-
80
- s = remove_extra_spaces(s)
81
- s = unicode_normalize("!”#$%&’()*+,-./:;<>?@[¥]^_`{|}〜", s) # keep =,・,「,」
82
- s = re.sub("[’]", "'", s)
83
- s = re.sub("[”]", '"', s)
84
- return s
85
-
86
-
87
- CODE_PATTERN = re.compile(r"```.*?```", re.MULTILINE | re.DOTALL)
88
- LINK_PATTERN = re.compile(r"!?\[([^\]\)]+)\]\([^\)]+\)")
89
- IMG_PATTERN = re.compile(r"<img[^>]*>")
90
- URL_PATTERN = re.compile(r"(http|ftp)s?://[^\s]+")
91
- NEWLINES_PATTERN = re.compile(r"(\s*\n\s*)+")
92
-
93
-
94
- def clean_markdown(markdown_text):
95
- markdown_text = CODE_PATTERN.sub(r"", markdown_text)
96
- markdown_text = LINK_PATTERN.sub(r"\1", markdown_text)
97
- markdown_text = IMG_PATTERN.sub(r"", markdown_text)
98
- markdown_text = URL_PATTERN.sub(r"", markdown_text)
99
- markdown_text = NEWLINES_PATTERN.sub(r"\n", markdown_text)
100
- markdown_text = markdown_text.replace("`", "")
101
- return markdown_text
102
-
103
-
104
- def normalize_text(markdown_text):
105
- markdown_text = clean_markdown(markdown_text)
106
- markdown_text = markdown_text.replace("\t", " ")
107
- markdown_text = normalize_neologd(markdown_text).lower()
108
- markdown_text = markdown_text.replace("\n", " ")
109
- return markdown_text
110
-
111
-
112
- def preprocess_qiita_body(markdown_text):
113
- return "body: " + normalize_text(markdown_text)[:4000]
114
-
115
-
116
- def postprocess_title(title):
117
- return re.sub(r"^title: ", "", title)
118
-
119
- st.title("Qiita記事タイトル案生成")
120
-
121
- description_text = st.empty()
122
-
123
- if "trained_model" not in st.session_state:
124
- description_text.text("...モデル読み込み中...")
125
-
126
- trained_model, tokenizer = load_model()
127
- trained_model.eval()
128
-
129
- st.session_state.trained_model = trained_model
130
- st.session_state.tokenizer = tokenizer
131
-
132
- trained_model = st.session_state.trained_model
133
- tokenizer = st.session_state.tokenizer
134
-
135
- # GPUの利用有無
136
- USE_GPU = torch.cuda.is_available()
137
-
138
- description_text.text("記事の本文をコピペ入力して、タイトル生成ボタンを押すと、タイトル案が10個生成されます。\nGPUが使えないため生成に数十秒かかります。")
139
- qiita_body = st.text_area(label="記事の本文", value="", height=300, max_chars=4000)
140
- answer = st.button("タイトル生成")
141
-
142
- if answer:
143
- title_fieids = st.empty()
144
- title_fieids.markdown("...生成中...")
145
-
146
- MAX_SOURCE_LENGTH = 512 # 入力される記事本文の最大トークン数
147
- MAX_TARGET_LENGTH = 64 # 生成されるタイトルの最大トークン数
148
-
149
- # 前処理とトークナイズを行う
150
- inputs = [preprocess_qiita_body(qiita_body)]
151
- batch = tokenizer.batch_encode_plus(
152
- inputs,
153
- max_length=MAX_SOURCE_LENGTH,
154
- truncation=True,
155
- padding="longest",
156
- return_tensors="pt",
157
- )
158
-
159
- input_ids = batch["input_ids"]
160
- input_mask = batch["attention_mask"]
161
- if USE_GPU:
162
- input_ids = input_ids.cuda()
163
- input_mask = input_mask.cuda()
164
-
165
- # 生成処理を行う
166
- outputs = trained_model.generate(
167
- input_ids=input_ids,
168
- attention_mask=input_mask,
169
- max_length=MAX_TARGET_LENGTH,
170
- return_dict_in_generate=True,
171
- output_scores=True,
172
- temperature=1.0, # 生成にランダム性を入れる温度パラメータ
173
- num_beams=10, # ビームサーチの探索幅
174
- diversity_penalty=1.0, # 生成結果の多様性を生み出すためのペナルティ
175
- num_beam_groups=10, # ビームサーチのグループ数
176
- num_return_sequences=10, # 生成する文の数
177
- repetition_penalty=1.5, # 同じ文の繰り返し(モード崩壊)へのペナルティ
178
- )
179
-
180
- # 生成されたトークン列を文字列に変換する
181
- generated_titles = [
182
- tokenizer.decode(
183
- ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
184
- )
185
- for ids in outputs.sequences
186
- ]
187
-
188
- # 生成されたタイトルを表示する
189
- titles = "## タイトル案:\n\n"
190
-
191
- for i, title in enumerate(generated_titles):
192
- titles += f"1. {postprocess_title(title)}\n"
193
-
194
- title_fieids.markdown(titles)