from __future__ import unicode_literals import re import unicodedata import torch import streamlit as st from transformers import T5ForConditionalGeneration, T5Tokenizer def load_model(): # 学習済みモデルをHugging Face model hubからダウンロードする model_dir_name = "sonoisa/t5-qiita-title-generation" # トークナイザー(SentencePiece) tokenizer = T5Tokenizer.from_pretrained(model_dir_name, is_fast=True) # 学習済みモデル trained_model = T5ForConditionalGeneration.from_pretrained(model_dir_name) # GPUの利用有無 USE_GPU = torch.cuda.is_available() if USE_GPU: trained_model.cuda() return trained_model, tokenizer def unicode_normalize(cls, s): pt = re.compile("([{}]+)".format(cls)) def norm(c): return unicodedata.normalize("NFKC", c) if pt.match(c) else c s = "".join(norm(x) for x in re.split(pt, s)) s = re.sub("-", "-", s) return s def remove_extra_spaces(s): s = re.sub("[  ]+", " ", s) blocks = "".join( ( "\u4E00-\u9FFF", # CJK UNIFIED IDEOGRAPHS "\u3040-\u309F", # HIRAGANA "\u30A0-\u30FF", # KATAKANA "\u3000-\u303F", # CJK SYMBOLS AND PUNCTUATION "\uFF00-\uFFEF", # HALFWIDTH AND FULLWIDTH FORMS ) ) basic_latin = "\u0000-\u007F" def remove_space_between(cls1, cls2, s): p = re.compile("([{}]) ([{}])".format(cls1, cls2)) while p.search(s): s = p.sub(r"\1\2", s) return s s = remove_space_between(blocks, blocks, s) s = remove_space_between(blocks, basic_latin, s) s = remove_space_between(basic_latin, blocks, s) return s def normalize_neologd(s): s = s.strip() s = unicode_normalize("0-9A-Za-z。-゚", s) def maketrans(f, t): return {ord(x): ord(y) for x, y in zip(f, t)} s = re.sub("[˗֊‐‑‒–⁃⁻₋−]+", "-", s) # normalize hyphens s = re.sub("[﹣-ー—―─━ー]+", "ー", s) # normalize choonpus s = re.sub("[~∼∾〜〰~]+", "〜", s) # normalize tildes (modified by Isao Sonobe) s = s.translate( maketrans( "!\"#$%&'()*+,-./:;<=>?@[¥]^_`{|}~。、・「」", "!”#$%&’()*+,-./:;<=>?@[¥]^_`{|}〜。、・「」", ) ) s = remove_extra_spaces(s) s = unicode_normalize("!”#$%&’()*+,-./:;<>?@[¥]^_`{|}〜", s) # keep =,・,「,」 s = re.sub("[’]", "'", s) s = re.sub("[”]", '"', s) return s CODE_PATTERN = re.compile(r"```.*?```", re.MULTILINE | re.DOTALL) LINK_PATTERN = re.compile(r"!?\[([^\]\)]+)\]\([^\)]+\)") IMG_PATTERN = re.compile(r"]*>") URL_PATTERN = re.compile(r"(http|ftp)s?://[^\s]+") NEWLINES_PATTERN = re.compile(r"(\s*\n\s*)+") def clean_markdown(markdown_text): markdown_text = CODE_PATTERN.sub(r"", markdown_text) markdown_text = LINK_PATTERN.sub(r"\1", markdown_text) markdown_text = IMG_PATTERN.sub(r"", markdown_text) markdown_text = URL_PATTERN.sub(r"", markdown_text) markdown_text = NEWLINES_PATTERN.sub(r"\n", markdown_text) markdown_text = markdown_text.replace("`", "") return markdown_text def normalize_text(markdown_text): markdown_text = clean_markdown(markdown_text) markdown_text = markdown_text.replace("\t", " ") markdown_text = normalize_neologd(markdown_text).lower() markdown_text = markdown_text.replace("\n", " ") return markdown_text def preprocess_qiita_body(markdown_text): return "body: " + normalize_text(markdown_text)[:4000] def postprocess_title(title): return re.sub(r"^title: ", "", title) trained_model, tokenizer = load_model() # GPUの利用有無 USE_GPU = torch.cuda.is_available() # 推論モード設定 trained_model.eval() st.title("Qiita記事タイトル案生成") st.text("記事の本文をコピペ入力して、タイトル生成ボタンを押すと、タイトル案が10個生成されます。") body_text = st.text_area(label="記事の本文", value="", height=300, max_chars=4000) answer = st.button("タイトル生成") if answer: qiita_body = str(body_text) MAX_SOURCE_LENGTH = 512 # 入力される記事本文の最大トークン数 MAX_TARGET_LENGTH = 64 # 生成されるタイトルの最大トークン数 # 前処理とトークナイズを行う inputs = [preprocess_qiita_body(qiita_body)] batch = tokenizer.batch_encode_plus( inputs, max_length=MAX_SOURCE_LENGTH, truncation=True, padding="longest", return_tensors="pt", ) input_ids = batch["input_ids"] input_mask = batch["attention_mask"] if USE_GPU: input_ids = input_ids.cuda() input_mask = input_mask.cuda() # 生成処理を行う outputs = trained_model.generate( input_ids=input_ids, attention_mask=input_mask, max_length=MAX_TARGET_LENGTH, return_dict_in_generate=True, output_scores=True, temperature=1.0, # 生成にランダム性を入れる温度パラメータ num_beams=10, # ビームサーチの探索幅 diversity_penalty=1.0, # 生成結果の多様性を生み出すためのペナルティ num_beam_groups=10, # ビームサーチのグループ数 num_return_sequences=10, # 生成する文の数 repetition_penalty=1.5, # 同じ文の繰り返し(モード崩壊)へのペナルティ ) # 生成されたトークン列を文字列に変換する generated_titles = [ tokenizer.decode( ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) for ids in outputs.sequences ] # 生成されたタイトルを表示する titles = "## タイトル案:\n\n" for i, title in enumerate(generated_titles): titles += f"1. {postprocess_title(title)}\n" st.markdown(titles)