File size: 1,909 Bytes
ab1e39e
 
 
 
 
 
ae5a541
ab1e39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb3c81c
ab1e39e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM

# Load model and processor
processor = AutoProcessor.from_pretrained("microsoft/git-base")
model = AutoModelForCausalLM.from_pretrained("sonukiller/git-base-cartoon")

# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)

def generate_caption(image):
    """
    Generate a caption for the given image using the custom model
    """
    # Preprocess the image
    inputs = processor(images=image, return_tensors="pt").to(device)
    
    # Generate caption
    with torch.no_grad():
        generated_ids = model.generate(
            pixel_values=inputs.pixel_values,
            max_length=50,
            num_beams=4,
            early_stopping=True
        )
    
    # Decode the generated ids to text
    generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
    
    return generated_caption

# Create Gradio interface
with gr.Blocks(title="Custom Image Captioning", css="footer {visibility: hidden}") as demo:
    gr.Markdown("# Custom Image Captioning Model")
    gr.Markdown("Upload an image and get a caption generated by a custom-trained model.")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            caption_button = gr.Button("Generate Caption")
        
        with gr.Column():
            output_text = gr.Textbox(label="Generated Caption")
    
    caption_button.click(
        fn=generate_caption,
        inputs=input_image,
        outputs=output_text
    )
    
    gr.Examples(
        examples=[
            "examples/example1.png",
        ],
        inputs=input_image,
        outputs=output_text,
        fn=generate_caption,
        cache_examples=True,
    )

# Launch the app
demo.launch()