sooolee commited on
Commit
5ec8c71
·
1 Parent(s): 3570890

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -0
app.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import torch
4
+ from peft import PeftModel, PeftConfig
5
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
6
+
7
+ def load_data(path):
8
+ """
9
+ Load dataset
10
+ """
11
+ input_path = os.path.join(path)
12
+ with open(input_path, "r") as f:
13
+ data = f.read()
14
+
15
+ return data
16
+
17
+ def preprocessing(data):
18
+ texts = list()
19
+
20
+ i = 0
21
+ if len(data) <= i+4000:
22
+ texts = data
23
+ else:
24
+ while len(data[i:]) != 0:
25
+ if len(data[i:]) > 4000:
26
+ string = str(data[i:i+4000])
27
+ texts.append(string)
28
+ i = i + 3800
29
+ else:
30
+ string = str(data[i:])
31
+ texts.append(string)
32
+ break
33
+ return texts
34
+
35
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
36
+
37
+ peft_model_id = "sooolee/flan-t5-base-cnn-samsum-lora"
38
+ config = PeftConfig.from_pretrained(peft_model_id)
39
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
40
+ model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, device_map='auto') # load_in_8bit=True,
41
+ model = PeftModel.from_pretrained(model, peft_model_id, device_map='auto')
42
+
43
+ def summarize(path):
44
+ transcript = load_data(path)
45
+ texts = preprocessing(transcript)
46
+ inputs = tokenizer(texts, return_tensors="pt", padding=True, )
47
+
48
+ with torch.no_grad():
49
+ output_tokens = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=60, do_sample=True, top_p=0.9)
50
+ outputs = tokenizer.batch_decode(output_tokens.detach().cpu().numpy(), skip_special_tokens=True)
51
+
52
+ return outputs
53
+
54
+ gr.Interface(
55
+ fn=summarize,
56
+ title = 'Summarize Transcripts',
57
+ inputs = gr.File(file_types="text", label="Upload a text file.", interactive=True),
58
+ outputs = gr.Textbox(label="Summary", max_lines=120, interactive=False),
59
+ ).launch()