Update app.py
Browse files
app.py
CHANGED
@@ -38,7 +38,7 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
38 |
peft_model_id = "sooolee/flan-t5-base-cnn-samsum-lora"
|
39 |
config = PeftConfig.from_pretrained(peft_model_id)
|
40 |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
41 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, device_map='auto') # load_in_8bit=True,
|
42 |
model = PeftModel.from_pretrained(model, peft_model_id, device_map='auto')
|
43 |
|
44 |
def summarize(video_id):
|
@@ -51,12 +51,12 @@ def summarize(video_id):
|
|
51 |
transcript += dict[i]['text']
|
52 |
|
53 |
texts = preprocessing(transcript)
|
54 |
-
inputs = tokenizer(
|
55 |
inputs = inputs["input_ids"].to(device)
|
56 |
|
57 |
with torch.no_grad():
|
58 |
-
output_tokens = model.generate(
|
59 |
-
outputs = tokenizer.batch_decode(output_tokens
|
60 |
|
61 |
return outputs
|
62 |
|
|
|
38 |
peft_model_id = "sooolee/flan-t5-base-cnn-samsum-lora"
|
39 |
config = PeftConfig.from_pretrained(peft_model_id)
|
40 |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
41 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, load_in_8bit=True, device_map='auto') # load_in_8bit=True,
|
42 |
model = PeftModel.from_pretrained(model, peft_model_id, device_map='auto')
|
43 |
|
44 |
def summarize(video_id):
|
|
|
51 |
transcript += dict[i]['text']
|
52 |
|
53 |
texts = preprocessing(transcript)
|
54 |
+
inputs = tokenizer(texts, return_tensors="pt", padding=True, )
|
55 |
inputs = inputs["input_ids"].to(device)
|
56 |
|
57 |
with torch.no_grad():
|
58 |
+
output_tokens = model.generate(inputs, max_new_tokens=60, do_sample=True, top_p=0.9)
|
59 |
+
outputs = tokenizer.batch_decode(output_tokens.detach().cpu().numpy(), skip_special_tokens=True)
|
60 |
|
61 |
return outputs
|
62 |
|