File size: 9,406 Bytes
1cc6224 28f6562 a47a718 1cc6224 84c29fc 1cc6224 84c29fc ff9d83f 1cc6224 84c29fc 1cc6224 84c29fc ff9d83f 1cc6224 7edbd9e 1cc6224 ff9d83f 28f6562 576e9e0 d8380ea 9da9cf0 d8380ea a47a718 67f4ba6 a47a718 67f4ba6 a47a718 67f4ba6 a47a718 ff9d83f 1cc6224 84c29fc 8049f79 1cc6224 8049f79 1cc6224 a2d4f25 00a8647 a2d4f25 49b487f 5c9b397 49b487f 2d3347f 49b487f 2d3347f 49b487f ac24044 3a8e3d0 49b487f a108bf7 38c29ee c9b9ecd fecd654 6b2d9c8 bdeda9a c9b9ecd e40b4d3 a3e71f6 bdeda9a a3e71f6 bdeda9a 72daea0 ef696a4 c9b9ecd 38c29ee a7c66fa c1ab79c 2c88c25 cad7c6a d06a5bf c244248 4e062ee c244248 d06a5bf c244248 321e1af 4e062ee 82ba95c bf79fbd a47a718 bf79fbd 8049f79 bf79fbd c518ed1 d741438 0ac7389 1cc6224 28f6562 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
import random
#import transformers
#from transformers import pipeline
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing AI-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You are an AI chatbot specialized in providing information on AI usage, helpful tools, and teaching users about AI."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability in providing AI information.
"""
try:
user_message = f"Here's the information on AI: {relevant_segment}"
# Append user's message to messages list
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=350,
temperature=0.2,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
# Extract the response text
output_text = response['choices'][0]['message']['content'].strip()
# Append assistant's message to messages list for context
messages.append({"role": "assistant", "content": output_text})
fun_int=random.randint(0,11)
fun_facts=["Young Einstein didn't talk until much later in his childhood.","Einstein had larger-than-average perietal lobes.","Einstein was a talented violinist","Einstein's brain was preserved after his death!","Einstein started as a teacher, but couldn't find a job.","Einstein's famous equation E=mc² was announced in 1905.","Einstein won The Nobel Prize in Physics in 1921","Einstien did not wear socks!","Einstein loved sailing.",'Einstein once said -"If you can not explain it simply, you don not understand it well enough."','Einstein once said- "Logic will get you from A to B. Imagination will get you anywhere."']
output_text=output_text+"\n\n Here is a fun fact about Albert Einstein!: " + fun_facts[fun_int-1]
ai_int=random.randint(0,10)
ai_helpers=["https://chatgpt.com/ - An AI chatbot","https://www.grammarly.com/ - Help with grammar and writing!","https://www.any.do/ - Creates a to do list to help you get your tasks completed!","https://scheduler.ai/- AI optimizes your schedule and works around pre-scheduled deadlines","ChatGPT Data Analyst - Helps you visualize and analize your data","ChatGPT Logo creator - Helps to create professional logos for companies or brands","ScholarGPT - Enhances your reaserch capabilities","ChatGPT's Math solver","Tutor Me by Khan Academy","Travel Guide by capchair - helps find destinations, plan trips, and manage budgets"]
output_text=output_text+"\n\n Here is a helpful chatbot tool for you!: "+ ai_helpers[ai_int-1]
return output_text
# Create pipeline for text generation with confidence scores
#generator = pipeline("text-davinci-003", device=0) # Adjust device if needed
# Generate response and get confidence score
#response = generator(query=f"Here's the information on AI: {relevant_segment} {user_query}", max_length=150, temperature=0.2, top_p=1)
#generated_text = response[0]['generated_text'].strip()
#confidence_score = response[0]['score']
#return generated_text, confidence_score, output_text
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to AI-nstein! Ask me anything about AI ML, and helpful tools you may want to use!"
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Could not find specific information. Please refine your question."
response = generate_response(question, relevant_segment)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
## Your AI-driven assistant for all AI-related queries.
"""
topicList = """
### Feel free to ask me anything from the topics below! \nI give you a fun chatbot and an Einstein fact with every answer.
"""
topics1 = """
\n- AI Usage
\n- AI Safety
\n- How AI Works
"""
topics2 = """
\n- Basics of AI
\n- Fun Facts about AI
\n- Examples of AI
"""
headline="""
#Welcome to AI-nstein!
"""
#def display_image():
#return "https://i.giphy.com/media/v1.Y2lkPTc5MGI3NjExZzdqMnkzcWpjbGhmM3hzcXp0MGpuaTF5djR4bjBxM3Biam5zbzNnMCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9cw/GxMnTi3hV3qaIgbgQL/giphy.gif"
#return "https://cdn-uploads.huggingface.co/production/uploads/6668622b72b61ba78fe7d4bb/PkWjNxvGm9MOqGkZdiT4e.png"
theme = gr.themes.Monochrome(
primary_hue="amber", #okay this did NOT work lmaoo
secondary_hue="rose",
).set(
body_text_color='#FFFFFF',
body_text_color_dark='#000000',
background_fill_primary='#81A4CD', # BACKGROUND
background_fill_primary_dark='#81A4CD',
background_fill_secondary='#884e4c', # BUTTON HOVER
background_fill_secondary_dark='#EDDEC0', #LOADING BAR
border_color_accent='#EDDEC0',
border_color_accent_dark='#EDDEC0',
border_color_accent_subdued='#EDDEC0',
border_color_primary='#F17300',
block_border_color='#F17300',
button_primary_background_fill='#054A91',
button_primary_background_fill_dark='#054A91'
)
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
with gr.Row(equal_height=True):
with gr.Column():
gr.Image("ally.png", container = False, show_share_button = False, show_download_button = False, label="output", show_label=True, elem_id="output_image", scale=0, width=500)
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topicList)
with gr.Row(equal_height=True):
gr.Markdown(topics1) # Show the topics on the left side
gr.Markdown(topics2)
with gr.Row():
with gr.Column():
gr.Markdown(" ")
gr.Markdown(headline)
gr.Markdown(" ")
question = gr.Textbox(label="Your question:", placeholder="What do you want to ask about?")
submit_button = gr.Button("Submit!")
answer = gr.Textbox(label="AI-nswer:", placeholder="AI-nstein will respond here...", interactive=False, lines=10)
submit_button.click(fn=query_model, inputs=question, outputs=answer)
#def display_response(question):
#response, confidence_score = query_model(question)
#answer.value = f"Response: {response}\nConfidence Score: {confidence_score:.2f}"
#submit_button.click(fn=display_response, inputs=question, outputs=None)
# Launch the Gradio app to allow user interaction
demo.launch(share=True) |