from transformers import pipeline | |
import gradio as gr | |
# Initialize the summarization model using a PyTorch-based model | |
model = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") | |
def predict(prompt): | |
summary = model(prompt)[0]['summary_text'] | |
return summary | |
# Build the Gradio interface | |
with gr.Blocks() as demo: | |
textbox = gr.Textbox(placeholder="Enter text block to summarize", lines=4) | |
gr.Interface(fn=predict, inputs=textbox, outputs="text") | |
# Launch the demo | |
demo.launch() | |