pr/1 (#1)
Browse files- setup processing & initial classifier (d1276d6fedbf2879914e20609918aae06c884daf)
- .gitignore +3 -1
- models/audio_classification_baseline.pkl +3 -0
- tasks/audio.py +46 -22
.gitignore
CHANGED
@@ -6,7 +6,9 @@ __pycache__/
|
|
6 |
.env
|
7 |
.ipynb_checkpoints
|
8 |
.vscode/
|
9 |
-
|
|
|
|
|
10 |
eval-queue/
|
11 |
eval-results/
|
12 |
eval-queue-bk/
|
|
|
6 |
.env
|
7 |
.ipynb_checkpoints
|
8 |
.vscode/
|
9 |
+
notebooks
|
10 |
+
Pipfile
|
11 |
+
Pipfile.lock
|
12 |
eval-queue/
|
13 |
eval-results/
|
14 |
eval-queue-bk/
|
models/audio_classification_baseline.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a27a9a671a920660995bc08b255e17449427f018402ceec81710a0ae93cb612
|
3 |
+
size 36073945
|
tasks/audio.py
CHANGED
@@ -4,9 +4,12 @@ from datasets import load_dataset
|
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
import os
|
|
|
|
|
|
|
7 |
|
8 |
-
from
|
9 |
-
from
|
10 |
|
11 |
from dotenv import load_dotenv
|
12 |
load_dotenv()
|
@@ -17,13 +20,12 @@ DESCRIPTION = "Random Baseline"
|
|
17 |
ROUTE = "/audio"
|
18 |
|
19 |
|
20 |
-
|
21 |
@router.post(ROUTE, tags=["Audio Task"],
|
22 |
description=DESCRIPTION)
|
23 |
async def evaluate_audio(request: AudioEvaluationRequest):
|
24 |
"""
|
25 |
Evaluate audio classification for rainforest sound detection.
|
26 |
-
|
27 |
Current Model: Random Baseline
|
28 |
- Makes random predictions from the label space (0-1)
|
29 |
- Used as a baseline for comparison
|
@@ -38,35 +40,58 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
38 |
}
|
39 |
# Load and prepare the dataset
|
40 |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
41 |
-
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
|
42 |
-
|
43 |
# Split dataset
|
44 |
-
train_test = dataset["train"].train_test_split(
|
|
|
45 |
test_dataset = train_test["test"]
|
46 |
-
|
47 |
# Start tracking emissions
|
48 |
tracker.start()
|
49 |
tracker.start_task("inference")
|
50 |
-
|
51 |
-
|
52 |
# YOUR MODEL INFERENCE CODE HERE
|
53 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
true_labels = test_dataset["label"]
|
58 |
-
|
59 |
-
|
60 |
-
#--------------------------------------------------------------------------------------------
|
61 |
# YOUR MODEL INFERENCE STOPS HERE
|
62 |
-
|
63 |
-
|
64 |
# Stop tracking emissions
|
65 |
emissions_data = tracker.stop_task()
|
66 |
-
|
67 |
# Calculate accuracy
|
68 |
accuracy = accuracy_score(true_labels, predictions)
|
69 |
-
|
70 |
# Prepare results dictionary
|
71 |
results = {
|
72 |
"username": username,
|
@@ -84,5 +109,4 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
84 |
"test_seed": request.test_seed
|
85 |
}
|
86 |
}
|
87 |
-
|
88 |
-
return results
|
|
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
import os
|
7 |
+
import joblib
|
8 |
+
import librosa
|
9 |
+
import numpy as np
|
10 |
|
11 |
+
from utils.evaluation import AudioEvaluationRequest
|
12 |
+
from utils.emissions import tracker, clean_emissions_data, get_space_info
|
13 |
|
14 |
from dotenv import load_dotenv
|
15 |
load_dotenv()
|
|
|
20 |
ROUTE = "/audio"
|
21 |
|
22 |
|
|
|
23 |
@router.post(ROUTE, tags=["Audio Task"],
|
24 |
description=DESCRIPTION)
|
25 |
async def evaluate_audio(request: AudioEvaluationRequest):
|
26 |
"""
|
27 |
Evaluate audio classification for rainforest sound detection.
|
28 |
+
|
29 |
Current Model: Random Baseline
|
30 |
- Makes random predictions from the label space (0-1)
|
31 |
- Used as a baseline for comparison
|
|
|
40 |
}
|
41 |
# Load and prepare the dataset
|
42 |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
43 |
+
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
|
44 |
+
|
45 |
# Split dataset
|
46 |
+
train_test = dataset["train"].train_test_split(
|
47 |
+
test_size=request.test_size, seed=request.test_seed)
|
48 |
test_dataset = train_test["test"]
|
49 |
+
|
50 |
# Start tracking emissions
|
51 |
tracker.start()
|
52 |
tracker.start_task("inference")
|
53 |
+
|
54 |
+
# --------------------------------------------------------------------------------------------
|
55 |
# YOUR MODEL INFERENCE CODE HERE
|
56 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
57 |
+
# --------------------------------------------------------------------------------------------
|
58 |
+
# data formatting
|
59 |
+
|
60 |
+
def preprocess(dataset):
|
61 |
+
features = []
|
62 |
+
for row in dataset:
|
63 |
+
# Load the audio file and resample it
|
64 |
+
target_sr = 25000
|
65 |
+
audio = row['audio']['array']
|
66 |
+
audio = librosa.resample(audio, orig_sr=12000, target_sr=target_sr)
|
67 |
+
|
68 |
+
# Extract MFCC features
|
69 |
+
mfccs = librosa.feature.mfcc(y=audio, sr=target_sr, n_mfcc=40)
|
70 |
+
mfccs_scaled = np.mean(mfccs.T, axis=0)
|
71 |
+
|
72 |
+
# Append features and labels
|
73 |
+
features.append(mfccs_scaled)
|
74 |
+
|
75 |
+
return np.array(features)
|
76 |
+
|
77 |
+
X_test = preprocess(test_dataset)
|
78 |
+
|
79 |
+
classification_model = joblib.load(
|
80 |
+
"../models/audio_classification_baseline.pkl")
|
81 |
+
|
82 |
+
predictions = classification_model.predict(X_test)
|
83 |
true_labels = test_dataset["label"]
|
84 |
+
|
85 |
+
# --------------------------------------------------------------------------------------------
|
|
|
86 |
# YOUR MODEL INFERENCE STOPS HERE
|
87 |
+
# --------------------------------------------------------------------------------------------
|
88 |
+
|
89 |
# Stop tracking emissions
|
90 |
emissions_data = tracker.stop_task()
|
91 |
+
|
92 |
# Calculate accuracy
|
93 |
accuracy = accuracy_score(true_labels, predictions)
|
94 |
+
|
95 |
# Prepare results dictionary
|
96 |
results = {
|
97 |
"username": username,
|
|
|
109 |
"test_seed": request.test_seed
|
110 |
}
|
111 |
}
|
112 |
+
return results
|
|